(A) Let \(f(x) = 12 \ln \left(\frac{12}{x} \right) \). Find \(f'(x) \). (Start by rewriting \(f \) using a rule of logarithms.)

(B) Let \(f(x) = 12 \ln(x^{13}) \). Find \(f'(x) \). (Start by rewriting \(f \) using a rule of logarithms.)

(C) Let \(f(x) = 12x \ln(13) \). Find \(f'(x) \).

(D) The goal is to find the equation of the line tangent to the graph of the function

\[
f(x) = 5 + \ln(x^3)
\]

at the point where \(x = e^2 \).

Remember that the approach is to build the general form of the equation for the tangent line:

\[
(y - f(a)) = f'(a) \cdot (x - a)
\]

Get Parts

Identify the number \(a \).

Find \(f(a) \).

Question (D) continues on the next page.
Find \(f'(x) \). Hint: Start by rewriting \(f \) using a rule of logarithms.

Find \(f'(a) \).

Substitute Parts Into the General Tangent Line Equation

Convert the Equation to Slope Intercept Form