Class Drill 3: Guessing Limits by Substituting in Numbers

Without using a calculator, answer the following questions about the function

\[f(x) = \frac{x^2 - 6x + 5}{x^2 - 8x + 15} \]

Part 1: Function Values

(1) Factor \(f \). (Check your factorizations by multiplying.)

(2) Are you allowed to cancel factors in the factored form of \(f \)? Explain why you think you are allowed to cancel, or why you are not.

(3) Find \(f(1) \) by substituting \(x = 1 \) into the factored version of \(f \).

(4) Find \(f(3) \) by substituting \(x = 3 \) into the factored version of \(f \).

(5) Find \(f(5) \) by substituting \(x = 5 \) into the factored version of \(f \).

Part 2: Limits

Using the factored form of \(f \), compute the following values and guess the limits.

Guessing the limit at \(x = 5 \).
(Just leave answers as an expression ready to type into a calculator.)

(11) \(f(5.1) = \)

(12) \(f(5.01) = \)

(13) \(f(5.001) = \)

(15) Guess \(\lim_{x \to 5^+} f(x) = \)
(16) \(f(4.9) = \)

(17) \(f(4.99) = \)

(18) \(f(4.999) = \)

(20) Guess \(\lim_{x \to 5^-} f(x) = \)

(21) Guess \(\lim_{x \to 5} f(x) = \)

Guessing the limit at \(x = 3 \). (Simplify your answers.)

(11) \(f(3.1) = \)

(12) \(f(3.01) = \)

(13) \(f(3.001) = \)

(15) Guess \(\lim_{x \to 3^+} f(x) = \)

(16) \(f(2.9) = \)

(17) \(f(2.99) = \)

(18) \(f(2.999) = \)

(20) Guess \(\lim_{x \to 3^-} f(x) = \)

(21) Guess \(\lim_{x \to 3} f(x) = \)