Day 52 (Mon Nov 28, 2016)

- Pick up graded Exams
- Sit in Groups of 2 or 3
- Quiz 10 in Class this Wednesday, Nov 30
- Final Exam a week from today.
 - Monday Dec 5, 10:10am - 12:10pm
 - Notice start time!!
 - Bring your OU ID (sorry!)
 - I’ll post study guide later today

Today: Continuing Section 6.1
Area Between Curves
More Difficult Examples + Total Change Problems
Example #1 (Similar to Suggested Exercise C.1 #67)

Find the area of the region bounded by

\[y = x^5 \quad \text{and} \quad y = 16x \]

notice: interval is not given
not told whether graphs cross
not told which graph is on top

<table>
<thead>
<tr>
<th>x</th>
<th>y = x^5</th>
<th>y = 16x</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>(-3)^5 = -243</td>
<td>16(-3) = -48</td>
</tr>
<tr>
<td>-2</td>
<td>(-2)^5 = -32</td>
<td>16(-2) = -32</td>
</tr>
<tr>
<td>-1</td>
<td>(-1)^5 = -1</td>
<td>16(-1) = -16</td>
</tr>
<tr>
<td>0</td>
<td>0^5 = 0</td>
<td>16(0) = 0</td>
</tr>
<tr>
<td>1</td>
<td>1^5 = 1</td>
<td>16(1) = 16</td>
</tr>
<tr>
<td>2</td>
<td>2^5 = 32</td>
<td>16(2) = 32</td>
</tr>
<tr>
<td>3</td>
<td>3^5 = 243</td>
<td>16(3) = 48</td>
</tr>
</tbody>
</table>

\[y = 16x \]
\[(2, 32) \]
What interval should we use as the end of our region?
The only regions bounded by the graphs are from \(x = -2 \) to \(x = 2 \).

We could compute \(USA = \)

\[
\int_{x=-2}^{x=0} x^5 - 16x \, dx + \int_{x=0}^{x=2} 16x - x^5 \, dx
\]

But the two blue regions have exactly the same area, so we could compute just one integral and then multiply by 2 to get \(USA \).

\[
USA = 2 \times \int_{x=0}^{x=2} 16x - x^5 \, dx
\]
\[\text{USA} = 2 \cdot \left[\int_{x=0}^{x=2} 16x - x^5 \, dx \right] \]

\[= 2 \cdot \left[\left(\frac{16x^{1+1}}{1+1} - \frac{x^{5+1}}{5+1} \right) \right]_{x=0}^{x=2} \]

\[= 2 \cdot \left(\frac{16x^2}{2} - \frac{x^6}{6} \right) \bigg|_{x=0}^{x=2} \]

\[= 2 \cdot \left(8x^2 - \frac{x^6}{6} \right) \bigg|_{x=0}^{x=2} \]

\[= 2 \cdot \left(8(2)^2 - \frac{(2)^6}{6} \right) - \left(8(0)^2 - \frac{(0)^6}{6} \right) \]

\[= 2 \cdot \left[8(4) - \frac{64}{6} \right] = 2 \left[32 - \frac{32}{3} \right] = 2 \left[32 \left(\frac{2}{3} \right) \right] = \frac{32(4)}{3} \]
Example #2 Find area between graphs of \(y = e^{x} \) and \(y = -\frac{1}{x} \) for \(1 \leq x \leq 3 \)

(Similar to Suggested exercise 6.1 #5-7)

Notice: no interval is given. Good

- We're not told anything about the graphs

Solution: Make graphs.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = e^{x})</th>
<th>(y = -\frac{1}{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 1)</td>
<td>(e^{(1)} = e \approx 2.7)</td>
<td>(-\frac{1}{1} = -1)</td>
</tr>
<tr>
<td>(x = 2)</td>
<td>(e^{2})</td>
<td>(-\frac{1}{2})</td>
</tr>
<tr>
<td>(x = 3)</td>
<td>(e^{3})</td>
<td>(-\frac{1}{3})</td>
</tr>
</tbody>
</table>

So \(y = e^{x} \) is the top graph on whole interval.
So \(\text{USA} = \int_{x=1}^{x=3} e^x - \left(\frac{-1}{x} \right) \, dx = \int_{x=1}^{x=3} e^x + \frac{1}{x} \, dx \)

\[
= \left[e^x + \ln(x) \right]_{x=1}^{x=3}
\]

\[
= (e^3 + \ln(3)) - (e^{1} + \ln(1))
\]

\[
= e^3 + \ln(3) - e
\]

\(\approx 18.5 \)
For tomorrow

Similar to 6.1 #95

Yeast culture growing at a rate $W(t) = 0.5e^{0.35t}$ gm/hour

(A) Find area between graph of $W(t)$ and the t-axis over the interval $[0, 4]$

(B) Important: Interpret the results of (A).

What does (A) tell us??

Well start with this example tomorrow (Tuesday)

[End of Lecture]