Class Drill 24: Is One Given Function an Antiderivative of Another Given Function?

Circle the correct answer. Check your answers by differentiating.

[1] The constant function \(f(x) = \pi \) is an antiderivative of the constant function \(k(x) = 0 \). \hspace{1cm} \text{true} \hspace{0.5cm} \text{false}

[2] The constant function \(k(x) = 0 \) is an antiderivative of the constant function \(f(x) = \pi \). \hspace{1cm} \text{true} \hspace{0.5cm} \text{false}

[3] The constant function \(k(x) = 0 \) is an antiderivative of itself. \hspace{1cm} \text{true} \hspace{0.5cm} \text{false}

[4] The function \(g(x) = 5e^x \) is an antiderivative of itself. \hspace{1cm} \text{true} \hspace{0.5cm} \text{false}

[5] The function \(h(x) = 5e^\pi \) is an antiderivative of itself. \hspace{1cm} \text{true} \hspace{0.5cm} \text{false}

[6] If \(n \) is an integer, then \(\frac{x^{n+1}}{n+1} \) is an antiderivative of \(x^n \). \hspace{1cm} \text{true} \hspace{0.5cm} \text{false}