Finishing Section 2.1
Reviewed definition of Instantaneous Rate of Change (also called the derivative of f at x=a)

\[f'(a) = \lim_{b \to a} \frac{f(b) - f(a)}{b - a} \]

= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}

= slope M of the line tangent to graph of f at x=a
Reviewed the definition of the line tangent to graph of f at $x = a$. It is the line that has these two properties:

- It touches the graph of f at the point $(a, f(a))$ (the "point of tangency")
- It has slope $m = f'(a)$

Reviewed the general equation for the line tangent to graph of f at $x = a$.

$$(y - f(a)) = f'(a)(x - a)$$

Worked on graph work 4:

for $f(x) = 5x^2 - 2x + 7$,

a) Find $f'(a)$ using the definition of the derivative.

b) Find the equation for the line tangent to graph of f at $x = 2$.

Present your equation in slope-intercept form,
Section 2.4 The Derivative as a function

In Section 2.1, we had

\[f'(a) = \lim_{b \to a} \frac{f(b) - f(a)}{b - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = m = \text{derivative at a particular } x\text{-value } \frac{\text{number}}{\text{number}} \]

In Section 2.4, we have

\[f'(x) = \lim_{b \to x} \frac{f(b) - f(x)}{b - x} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \text{the derivative function} \frac{\text{variable}}{\text{function}} \]
We've actually done derivative problems before!

Example: Group Work 3: \(\lim_{{h \to 0}} \frac{(2+h)^3 - 8}{h} \)

Is this a number or a function? A number

So this is \(f'(a) \) for some function \(f(x) \) and some number \(a \).

What is \(f(x) \)? Notice the expression in 2th

What is \(a \)? Notice the expression in 2th

The number 2 is \(a \). \(a = 2 \).

Notice \((2+h)^2 \)

we see that \(f(\) \) is \((\)^3 \)

\[f(\) = (\)^3 \]

\[f(x) = x^3 \]

The group work found \(f'(2) \) for \(f(x) = x^3 \)
Second Problem on Group Work 3

\[\lim_{{h \to 0}} \frac{1}{{x+h}} - \frac{1}{{x}} \]

Very messy problem, but it does not require any trick; you just have to find common denominator.

function or number? Function of variable \(x \).

So the expression represents \(f'(x) \) for some \(f(x) \).

What is \(f(x) \)? Observe \(\frac{1}{{x}} \) in upper right.

So \(f(x) = \frac{1}{{x}} \)
Exercise 1.4 #21

\[
\lim_{{n \to 0}} \frac{\sqrt{9+n} - 3}{n}
\]

Function or number?
Numbers!

So this is \(f'(a) \) for some \(f(x) \) and some \(a \).

What is \(a \)? \(a = 9 \) because 9th term

What is \(f(x) \)?

\[
f(c) = \sqrt{c}
\]

So \(f(x) = \sqrt{x} \)

This exercise finds \(f'(9) \) for \(f(x) = \sqrt{x} \)
Group Work 5

for $f(x) = \frac{3x + 5}{x + 7}$, find $f'(x)$ using the Definition of the Derivative.

End of Lecture