Continuing Section 4.5 Absolute Extrema today: What happens when the Extreme Value Theorem cannot be used.

Class Drill 21 Local and Absolute Extrema

Example Where Closed Interval Method Won't Work

Let \(f(x) = x^4 - 6x^2 + 5 \)

Find absolute extrema on the interval \((-\infty, 0)\)

Notice: Domain is not a closed interval

So we are not guaranteed any absolute extrema.

Ask first: Will there be an absolute max?

Will there be an absolute min?
The Extreme Value Theorem says that if a function \(f \) is continuous on a closed interval \([a,b]\), then \(f \) will have both an absolute maximum and an absolute minimum on that interval. In this drill, you investigate what can happen when \(f \) is not continuous or the interval is not closed.

The graph of a function \(f \) is shown at right. Fill in the table below.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Local Maxima in that interval</th>
<th>Local Minima in that interval</th>
<th>Absolute Max in that interval</th>
<th>Absolute Min in that interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>([6,15])</td>
<td>(y = 9) (at (x = 8))</td>
<td>(y = 6) (occurs at (x = 12))</td>
<td>(y = 10) (occurs at (x = 13))</td>
<td>(y = 6) (occurs at (x = 12))</td>
</tr>
<tr>
<td>((6,15))</td>
<td>(y = 9) (occurs at (y = 8))</td>
<td>(y = 6) (occurs at (x = 12))</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>((8,15))</td>
<td>None</td>
<td>(y = 6) (occurs at (x = 12))</td>
<td>None</td>
<td>(y = 6) (occurs at (x = 12))</td>
</tr>
<tr>
<td>([2,12])</td>
<td>(y = 9) (occurs at (x = 8))</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>((2,12))</td>
<td>(y = 9)</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>((4,\infty))</td>
<td>(y = 9)</td>
<td>(y = 6)</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

\(\text{y} = 2 \)
Notice if f is an even degree polynomial with positive leading coefficient.

Reference 1 on page 1 of course packet reminds us that graph goes up on both ends. So no absolute max.

Since f is continuous, with no jumps or holes or vertical asymptotes, we know that there will be a lowest point on graph. So there will be an absolute min.

least y-value will exist.
But where do we find the absolute min?

Theorem 2 (Locating Absolute Extrema) from Friday tells us that the only places abs min can occur are:
- critical numbers
- x-values that are endpoints of the domain.

In our current example, the domain is $D = (-\infty, \infty)$ so we have no endpoints.

So our absolute min will have to occur at an x-value that is a critical number.

From Friday, we know that the critical numbers for f are $x = 0$, $x = -\sqrt{3}$, $x = \sqrt{3}$.
Find corresponding y-values

\[f(\sqrt{3}) = (\sqrt{3})^4 - 6(\sqrt{3})^2 + 5 \]
\[= (3)^2 - 6(3) + 5 \]
\[= 9 - 18 + 5 \]
\[= -4 \]

\[f(-\sqrt{3}) = (-\sqrt{3})^4 - 6(-\sqrt{3})^2 + 5 = f(\sqrt{3}) = -4 \]

\[f(0) = 0^4 - 6(0)^2 + 5 = 5 \]

Conclusion:
Absolute min is \(y = -4 \) (it occurs at \(x = -\sqrt{3} \) and \(x = \sqrt{3} \))

No absolute max!

[End of Lecture]