Chapter 4
Section 4.1 1st Derivatives & Graphs

Book section 4.1 is
- too long
- not well-organized reading
- not well-organized exercises

Today: Horizontal Tangents; Increasing & Decreasing Functions
Correspondence

Behavior of f' at a particular $x = c$ \iff Behavior of the graph of f at $x = c$.

- $f'(c)$ is positive \iff The line tangent to graph of f at $x = c$ tilts upward.

- $f'(c)$ is negative \iff Line tangent to graph of f at $x = c$ tilts downward.

- $f'(c) = 0$ \iff Line tangent to graph of f at $x = c$ is horizontal.
Definition of Increasing on an Interval

"f is increasing on the interval (a, b)."

meaning: If \(a < x_1 < x_2 < b \) then \(f(x_1) < f(x_2) \)

In other words, if you move from left to right in the interval \((a, b)\) the y-values go up.

Similar definition for Decreasing on an Interval

If \(a < x_1 < x_2 < b \) then \(f(x_1) > f(x_2) \).

Examples
New correspondence

Behavior of f' on interval (a,b)

f' is positive on interval $(a,b) \implies f$ is increasing on (a,b)

f' is negative on interval $(a,b) \implies f$ is decreasing on (a,b)

f' is zero on whole interval $(a,b) \iff f$ is constant on (a,b)

Compare pages 2 + 4 and see reference 6 in Course Packet

Exercise involving Graph of f \iff Graph of f'

Class Drill 14
Use the given graph of $y = f(x)$ to answer the following questions:

(A) Find the intervals on which $f'(x) > 0$.
\((-\infty, -3) \text{ and } (-3, 1) \text{ and } (1, 3)\)

(B) Find the intervals on which $f'(x) < 0$.
\((-3, 1) \text{ and } (3, \infty)\)

(C) Find the values of x for which $f'(x) = 0$.
$x = -3, \ x = 1, \ x = 3$

Then sketch a possible graph of $y = f'(x)$.
(Compare Class Drill 14 to Class Drill 6 which was done in class on Day 9 (Tues Jan 26).)

Analytical Example
Formula for \(f \) \(\Rightarrow \) info about increasing/decreasing behavior of \(f \)

Let \(f(x) = 2x^3 - 3x^2 - 12x + 5 \)

(A) Find \(x \)-coordinates of points where \(f \) has horizontal tangent lines

(B) Find intervals where \(f \) is increasing/decreasing.

Solution

(A) Set \(f'(x) = 0 \) and solve for \(x \)

\[
f'(x) = 6x^2 - 6x - 12 = 6(x^2 - x - 2) = 6(x+1)(x-2)
\]

\(f'(x) = 0 \) when \(x = -1 \) or \(x = 2 \)

\(x \)-values with horizontal tangents on graph of \(f \).

Check:

\[
(x+1)(x-2) = x^2 + x - 2x - 2 = x^2 - x - 2 \checkmark
\]
Strategy: Study **Sign Behavior** of \(f' \)

Make sign chart for \(f'(x) = 6(x+1)(x-2) \)

Recall the Partition Numbers for \(f' \) are:
- \(x \)-values where \(f'(x) = 0 \)
- \(x \)-values where \(f' \) is undefined

These are the only places where \(f' \) can change sign.

But since \(f'(x) \) is polynomial, there are no bad \(x \)-values where \(f'(x) \) is undefined.

So the only partition numbers are the ones where \(f'(x) = 0 \) that is \(x = -1, x = 2 \).
Sign Chart for $f'(x) = 6(x+1)(x-2) = 6x^2 - 6x - 12$

Factored Form Standard Form

\[f'(x) \quad f'(0) \quad f'(x) \quad f'(2) \quad f'(x) \]

\[\begin{align*}
F'_{\text{pos}} & \quad f' = 0 & \quad F'_{\text{neg}} & \quad f' = 0 & \quad F'_{\text{pos}} \\
X = -1 & \quad X = 0 & \quad X = 2 & \quad X = 3
\end{align*} \]

Sample
\[x = -2 \]

Sample
\[x = 3 \]

\[f'(-2) = 6(-2+1)(-2-2) = 6(-1)(-4) = \text{pos} \]

\[f'(0) = 0 + 0 - 12 = \text{neg} \]

\[f'(3) = 6(3+1)(3-2) = 6(4)(1) = \text{pos} \]

Conclude: f is increasing on intervals $(-\infty, -1)$ and $(2, \infty)$ because f' is positive there.

f is decreasing on the interval $(-1, 2)$ because f' is negative there.

End of lecture