MATH 1350 Day 26 (Wed Feb 24, 2016)

- Pick Up Graded Work
- Sign In

- Math Tutoring Center, in the Math Library on 4th floor of Morton Hall
 - Staffed by Graduate Students in Math who have experience teaching Calculus
 - Hours Tues/Thurs 9am-Noon and 1pm-4pm

- Our Exam 2 is this coming Friday, February 26

Work in groups on Class Drill 12b

\[C'(t) = \frac{d}{dt} \frac{14t}{t^2 + 1} = (0.14) \left(\frac{d}{dt} \frac{t}{t^2 + 1} \right) = (0.14) \left[\frac{e^{14t} \left((t^2 + 1)^2 - t (2t) (t^2 + 1) \right)}{(t^2 + 1)^2} \right] \]

\[= (0.14) \left[\frac{9(t^2 + 1) - t (2t)}{(t^2 + 1)^2} \right] = (0.14) \left[\frac{t^2 + 1 - 2t^2}{(t^2 + 1)^2} \right] \]

\[= (0.14) \left(-\frac{t^2 + 1}{(t^2 + 1)^2} \right) \]
Class Drill 12b: Rate of Change Problem (Rational Function with Peak)

A drug is administered by pill. The drug concentration (in milligrams per milliliter) in the bloodstream \(t \) hours after the pill is taken is given by the formula

\[
C(t) = \frac{0.14t}{t^2 + 1} \quad \text{for} \quad 0 \leq t
\]

(A) Find \(C(0.5) \) and \(C(3) \). (Give exact answers in symbols and then approximate answers in decimals. Include units in your answer.)

\[
C(0.5) = \frac{0.14(0.5)}{(0.5)^2 + 1} = \frac{0.07}{1.25} = \frac{0.07}{\frac{5}{4}} = \frac{0.07 \times 4}{5} = \frac{0.28}{5} = 0.056
\]

\[
C(3) = \frac{0.14(3)}{3^2 + 1} = \frac{0.42}{10} = 0.042 \quad \text{Exact}
\]

(B) Find \(C'(t) \).

\[
C'(t) = \frac{(0.14)(-t^2+1)}{(t^2+1)^2}
\]

(C) Find \(C'(0.5) \) and \(C'(3) \). (Give exact answers in symbols and then approximate answers in decimals. Include units in your answer.)

\[
C'(0.5) = \frac{0.14(0.5^2+1)}{(0.5^2+1)^2} = \frac{0.14(1.25)}{(1.25)^2} = \frac{0.175}{1.5625} = 0.0172 \quad \text{milligrams per ml}
\]

\[
C'(3) = \frac{(0.14)(-3^2+1)}{(3^2+1)^2} = \frac{0.14(-8)}{10^2} = -0.0112 \quad \text{mg/ml per hour}
\]

(D) Interpret the results of (A) & (C). (Refer to textbook example 6 on page 230 with similar question.)

At time \(t = 0.5 \) hours, concentration is roughly \(0.056 \) mg/ml and is increasing at a rate roughly \(0.0172 \) mg/ml per hour.

At time \(t = 3 \) hours, concentration is roughly \(0.042 \) mg/ml and is decreasing at a rate roughly \(-0.0112 \) mg/ml per hour.

(E) A graph of the concentration is shown below. Illustrate each of the quantities found in questions (A) and (C).
Class Drill 12c: Rate of Change Problem (Rational Function with Horizontal Asymptote)

Bob wrote an i-Phone Calculus app. The sales of the app are modeled by the function

\[S(t) = \frac{240t^2}{t^2 + 36} \]

In this function, \(t \) is a variable representing time in months since the app was introduced. \(S(t) \) is the total number of apps (in thousands) that have been sold at time \(t \).

(A) Find \(S(6) \). (exact answer)

\[S(6) = \frac{240(6)^2}{6^2 + 36} = \frac{240 \cdot 36}{36 + 36} = \frac{240 \cdot 36}{72} = \frac{240}{2} = 120 \]

(B) Find \(S'(6) \). (exact answer)

\[S'(6) = 20 \] See pages (4) and (5)

(C) Interpret the results of (A) & (B). (Refer to textbook example 6 on page 230 with similar question.)

6 months after the app was introduced, a total of 120,000 apps have been sold, and the apps are selling at a rate roughly 20,000 apps per month.

(D) Use the results of (A) and (B) to estimate the total sales after 7 months. (exact answer)

Estimate \(S(7) \) by graph estimate

\[S(7) \approx 140 \] 140,000 apps

(E) Find the actual value of the total sales after 7 months. (exact answer then approximate answer)

\[S(7) = \frac{240(7)^2}{7^2 + 36} = \frac{240(49)}{49 + 36} = 138 \] 138,000 apps

(F) How many apps can Bob hope to eventually sell? (exact answer)

\[\lim_{t \to \infty} S(t) = \lim_{t \to \infty} \frac{240t^2}{t^2 + 36} = \lim_{t \to \infty} \frac{240}{1} = 240 \] 240,000 apps

(G) Illustrate the answers to (A), (B), (D), (E), (F) using the graph below.
Details for Class Drill 12c

\[S(t) = \frac{240t^2}{t^2 + 36} \]

\[S'(t) = \frac{d}{dt}\left(\frac{240t^2}{t^2 + 36}\right) = \frac{d}{dt}\left(\frac{240t^2}{t^2 + 36}\right) - \frac{d}{dt}\left(\frac{0}{t^2 + 36}\right) \]

\[= \frac{(480t)(t^2 + 36) - 240t^2(2t)}{(t^2 + 36)^2} \]

\[= \frac{480t^3 + (480t)(36) - 480t^3}{(t^2 + 36)^2} \]

\[= \frac{480(36)t}{(t^2 + 36)^2} \]
\[
5'(6) = \frac{480(36)(6)}{(36^2 + 36)^2} = \frac{480(36)6}{(36+36)^2} = \frac{480(36)(6)}{(2\cdot36)^2}
\]

\[
= \frac{480(36)(6)}{2^2 \cdot 36^2} = \frac{120}{4 \cdot 36} = \frac{120}{6} = 20
\]

Cancel before multiplying