Another Example from Section 3.3

\[f(x) = \frac{x^4 + 4}{x^4} \quad \text{Similar to 3.3 #73} \]

Find \(f'(x) \) by (A) Using the Quotient Rule
(B) First Simplifying \(f \)

Solution

\[(A) \quad f'(x) = \frac{(d}{dx} (x^4 + 4))x^4 \quad -(x^4 + 4)(\frac{d}{dx} x^4) \]

\[= \frac{(x^4)^2}{(x^4)^2} \]

\[= \frac{(4x^3) \cdot x^4}{(x^4)^2} \quad -(x^4 + 4)(4x^3) \]

\[= 4x^7 - 4x^7 - 16x^3 \]

\[= \frac{-16x^3}{x^8} \]

\[= -\frac{16}{x^5} = f'(x) \]

This seems to be a very difficult step.
(B) Rewrite \(f(x) = \frac{x^4 + y}{x^4} = \frac{x^4}{x^4} + \frac{y}{x^4} = 1 + 4x^{-4} \)

Derivative \(f'(x) = \frac{d}{dx} 1 + 4dX^{-4} = 0 + 4(-4x^{-4-1}) \)

\[= -16x^{-5} = \frac{-16}{X^5} = f'(x) \]

Conclusion: Rewriting \(f \) in a more useful form first, before finding the derivative is

- Very helpful
- Apparently okay to do.
Another example similar to 3.3 #8

\[f(x) = \frac{3x^5 - 2x^7}{\sqrt[5]{x^3}} \]

Find \(f'(x) \)

Observe! This could be done with quotient rule, but it would be really messy and prone to errors.

Smarter solution: Rewrite \(f(x) \) in more useful form first

\[f(x) = \frac{3x^5 - 2x^7}{x^{3/5}} = 3x^{5-3/5} - 2x^{7-3/5} = 3x^{5-3/5} - 2x^{7-3/5} \]

Rewrite

\[f(x) = 3x^{5/3} - 2x^{7/5} \]

\[f'(x) = 3 \frac{d}{dx} x^{5/3} - 2 \frac{d}{dx} x^{7/5} = 3 \left(\frac{22}{5} \right) x^{22/5 - 1} - 2 \left(\frac{32}{5} \right) x^{32/5 - 1} \]

\[= \frac{66}{5} x^{17/5} - \frac{64}{5} x^{27/5} = f'(x) \]
Tangent Line Problem Similar to 3.3#65

\[f(x) = \frac{2x}{3^x} \] Find equation of line tangent to graph of \(f \) at \(x = 3 \).

Solution We need to build \(y - f(a) = f'(a)(x-a) \)

Get Parts

\[a = 3 \]

\[f(a) = f(3) = \frac{2 \cdot 3}{3^3} = \frac{2}{3^2} = \frac{2}{9} = f(a) \]

\[f'(a) = \frac{(d^2x)3^x - 2x(d3^x)}{(3^x)^2} = \frac{(2)3^x - 2x(3^x \ln(3))}{(3^x)^2} \]

\[= \frac{2 \cdot 3^x(1-x \ln(3))}{(3^x)^2} = \frac{2(1-x \ln(3))}{3^x} \]

\[f'(a) = \frac{2(1-3 \ln(3))}{3^3} = \frac{2(1-3 \ln(3))}{27} = f'(a) \]
Assemble Parts

\[(y - \frac{2}{9}) = \frac{2(1-3\ln(3))}{27} (x - 3) \]

Convert to slope intercept form

\[y - \frac{2}{9} = \left(\frac{2(1-3\ln(3))}{27}\right)(x) - \left(\frac{2(1-3\ln(3))}{27}\right)3 \]

\[y = \frac{2(1-3\ln(3))}{27}(x) - \frac{2(1-3\ln(3))}{9} + \frac{2}{9} \]

\[= \left(\frac{2(1-3\ln(3))}{27}\right)x - \frac{2}{9} + \frac{2\cdot3\ln(3)}{9} + \frac{2}{9} \]

\[y = \left(\frac{2(1-3\ln(3))}{27}\right)x + \frac{2\ln(3)}{3} \]

End of Lecture