Resuming yesterday's question: Does \(\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \) exist? If so, what is its value?

Big fact from higher math

- The limit \(\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \) does exist.
- The value of the limit is denoted \(e \).

 That is \(\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e \)

- Facts about \(e \)
 - \(e \) is close to 2.718
 - \(e \) is "irrational"
 - It is not rational. \(e \) cannot be expressed exactly as a fraction, or as a terminating decimal, or even as a repeating decimal.

Definition of the symbol \(e \)
So the only way to re-express e exactly is to use the symbol e.

Another related limit:

$$\lim_{{n \to \infty}} \left(1 + \frac{x}{n}\right)^n$$

Big Fact using change of variables, we could show that

$$\lim_{{n \to \infty}} \left(1 + \frac{x}{n}\right)^n = e^{(x)}$$

Discuss Graphs of $y = 2^x, y = 3^x, y = e^x$
Table of values

<table>
<thead>
<tr>
<th>x</th>
<th>(2^x)</th>
<th>(e^x)</th>
<th>(3^x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{e^2})</td>
<td>(\frac{1}{9})</td>
</tr>
<tr>
<td>-1</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{e})</td>
<td>(\frac{1}{3})</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(e)</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>(e^2)</td>
<td>9</td>
</tr>
</tbody>
</table>

Use the fact that \(2 < e < 3\)

Horizontal asymptote on left at \(y = 0\)

\((-2, \frac{1}{4})\), \((0, 1)\), \((1, e)\), \((-1, \frac{1}{3})\), \((-1, \frac{1}{2})\), \((2, 2^2)\), \((2, 3^2)\), \((2, 9)\)
Big Fact: Using more changes of variables, we could show that

\[\lim_{m \to \infty} A = \lim_{m \to \infty} P \left(1 + \frac{r}{m}\right)^{mt} = P e^{rt} \]

The formula for the balance \(A \) for periodically-compounded bank account with principal \(P \), interest rate \(r \), compounded \(m \) times per year for \(t \) years.

Explore this formula \(P e^{rt} \)

Use \(P = 1000 \), \(r = 0.02 \), \(t = 5 \) then we get

\[1000 e^{0.02 \cdot 5} = 1000 e^{0.1} \approx 1105.17 \]

Exact value \(\frac{1105.17}{1} \) decimal approximation
A couple of things to notice:

The segmented graph of \(A = P(1 + \frac{r}{m})^{mt} \) from yesterday looks sort-of like the shape of the right side of an exponential graph.

And the segmented graph would look more and more like the exponential graph as \(m \to \infty \).
Also note that the formula \(A = P(1 + \frac{r}{m})^{mt} \) is difficult to use, and is only good at certain values of \(t \). (the break points, where the interest gets compounded.)

But the values given by that formula are very close to the values given by the simple expression \(Pe^{rt} \).

Inspired by this, we invent a new kind of bank account: Formula for the balance is \(A = Pe^{rt} \) (no \(m \), no limit). This kind of account is called "Continuously-compounded Interest".
Graph of $A = Pe^{rt}$ as a function of time.

Notice when $t=0$, $A = Pe^{r\cdot0} = Pe^0 = P \cdot 1 = P$.

So $(t, A) = (0, P)$ is the vertical axis intercept.
Given equation $A = Pe^{(rt)}$, involving A, P, r, t
Solved for A.

Solve for P

\[
\frac{A}{e^{(rt)}} = P \quad \text{Solved for } P
\]

Solve for t

\[
\frac{A}{P} = e^{(rt)}
\]

Take natural log of both sides

\[
\ln\left(\frac{A}{P}\right) = \ln(e^{(rt)}) = rt
\]

Divide by r

\[
\frac{\ln(A/P)}{r} = t \quad \text{Solved for } t
\]
Solve for \(r \)

\[A = Pe^{rt} \]

divide by \(P \)

\[\frac{A}{P} = e^{rt} \]

take natural log of both sides

\[
\ln\left(\frac{A}{P}\right) = \ln(e^{rt}) = rt
\]

divide by \(t \)

\[
\ln\left(\frac{A}{P}\right) = \frac{rt}{t} = r
\]

Solved for \(r \)
Example: Deposit $937 into account with 2.3% interest compounded continuously. How long until the balance has grown to $1200.

(Exact answer, then decimal approx)

Solution: $\text{P} = 937$

$\text{r} = 0.023$

$\text{A} = 1200$

$t = \text{unknown}$

Use the formula that gives us t.

First
\[t = \frac{\ln \left(\frac{A}{P} \right)}{r} = \frac{\ln \left(\frac{1200}{937} \right)}{0.023} \times 10.25 \text{ years} \]

exact answer

decimal approximation

end of lecture