Day 3 (Wed Jan 13, 2016)

Remember:
- Sign in
- Quiz 1 on Friday
- Buy your course packers
- Put your phones away.

Today: Start with leftovers from Section 2.1

Limits of Difference Quotients

Example similar to 2.1 #67

For \(f(x) = x^2 - 6x + 5 \),

\[
\lim_{{h \to 0}} \frac{f(4+h) - f(4)}{h} \quad \text{(the limit of a difference quotient)}
\]

\[
\text{a “difference quotient”}
\]
Solution

First notice that if we substitute in $h=0$, we get

$$\frac{f(4+h) - f(4)}{h} = \frac{f(4) - f(4)}{0} = \frac{0}{0}$$

But this does not tell us that the limit is undefined. It only tells us that we have to use a different method.

We will use "algebraic simplification" as we did yesterday.
\[f(4) = (4)^2 - 6(4) + 5 \]
\[f(4+h) = (4+h)^2 - 6(4+h) + 5 \]
\[= (4+h)(4+h) - 6(4) - 6(h) + 5 \]
\[= 4^2 + 4h + 4h + h^2 - 6(4) - 6(h) + 5 \]

Compute the limit:
\[\lim_{h \to 0} \frac{f(4+h) - f(4)}{h} = \lim_{h \to 0} \frac{(4^2 + 8h + h^2 - 6(4) - 6h + 5) - (4^2 - 6(4) + 5)}{h} \]
\[= \lim_{h \to 0} \frac{8h + h^2 - 6h}{h} \]
\[= \lim_{h \to 0} \frac{2h + h^2}{h} \]
\[= \lim_{h \to 0} \frac{h(2+h)}{h} \]
\[= \lim_{h \to 0} 2 + h \]
\[= 2 \]

Since \(h \to 0 \), we know \(h \neq 0 \) so we can cancel \(\frac{h}{h} \)

Now we are taking limit of a polynomial, so the 3 says we can substitute \(h \to 0 \)
Conclusion: \(\lim_{{n \to 0}} \frac{f(x+n) - f(x)}{n} = 2 \)

Another example involving the limit of a rational function:

\[f(x) = \frac{(x+13)}{(x^2+13x)} \quad \frac{x^2 - 6x + 5}{x^2 - 8x + 15} = \frac{(x-1)(x-5)}{(x-3)(x-5)} \]

Find \(\lim_{{x \to 5}} f(x) = \lim_{{x \to 5}} \frac{(x-1)(x-5)}{(x-3)(x-5)} \)

Since \(x \to 5 \) we know \(x \neq 5 \)

So \(x - 5 \neq 0 \)

So we can cancel \(\frac{x-5}{x-5} \)

This is the limit of a rational function, and \(x=5 \) is in the domain.

So theorem 3 tells us that we can just substitute in \(x=5 \)

\[
\begin{align*}
\lim_{{x \to 5}} f(x) &= \frac{5-1}{5-3} \\
&= \frac{4}{2} \\
&= 2
\end{align*}
\]
Now for the same function $f(x)$, find $\lim_{x \to 3} f(x)$.

Solution:

$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{(x-1)(x-5)}{(x-3)(x-5)}$

$= \lim_{x \to 3} \frac{x-1}{x-3}$

Since $x \to 3$, we know that x is close to 3, so $x \neq 3$ and also $x \neq 5$ either. So we can cancel the $\frac{x-5}{x-5}$.

Notice: x is getting closer and closer to 3.

The limit of the numerator is

$\lim_{x \to 3} x-1 = 3-1 = 2$

\uparrow Theorem 3

The limit of the denominator is

$\lim_{x \to 3} x-3 = 3-3 = 0$

\uparrow Theorem 3

Since the limit of the numerator is 2 and the limit of the denominator is 0, Theorem 4 tells us that the limit does not exist!
Let's explore what's going on with the function

\[f(x) = \frac{x^2 - 6x + 15}{x^2 - 8x + 15} = \frac{(x-1)(x-5)}{(x-3)(x-5)} \]

We'll do that in Class Drill 3
Class Drill 3: Guessing Limits by Substituting in Numbers

Without using a calculator, answer the following questions about the function

\[f(x) = \frac{x^2 - 6x + 5}{x^2 - 8x + 15} \]

Part 1: Function Values

(1) Factor \(f \). (Check your factorizations by multiplying.)

\[f(x) = \frac{(x-1)(x-5)}{(x-3)(x-5)} \]

\[(x-1)(x-5) = x^2 - x - 5x + 5 = x^2 - 6x + 5 \]

\[(x-3)(x-5) = x^2 - 3x - 5x + 15 = x^2 - 8x + 15 \]

(2) Are you allowed to cancel factors in the factored form of \(f \)? Explain why you think you are allowed to cancel, or why you are not.

No, can't cancel because that would change the function into a different function (with a different domain).

(3) Find \(f(1) \) by substituting \(x = 1 \) into the factored version of \(f \).

\[f(1) = \frac{(1-1)(1-5)}{(1-3)(1-5)} = \frac{0(-4)}{-2(-4)} = \frac{0}{-2} = 0 \]

(4) Find \(f(3) \) by substituting \(x = 3 \) into the factored version of \(f \).

\[f(3) = \frac{(3-1)(3-5)}{(3-3)(3-5)} = \frac{2(-2)}{0(-2)} = \frac{2}{0} \text{ undefined!} \]

(5) Find \(f(5) \) by substituting \(x = 5 \) into the factored version of \(f \).

\[f(5) = \frac{(5-1)(5-5)}{(5-3)(5-5)} = \frac{4(0)}{2(0)} = \frac{0}{0} \text{ undefined} \]

Part 2: Limits

Using the factored form of \(f \), compute the following values and guess the limits.

Guessing the limit at \(x = 5 \).

(Just leave answers as an expression ready to type into a calculator.)

(11) \(f(5.1) = \frac{(5.1-1)(5.1-5)}{(5.1-3)(5.1-5)} = \frac{4.1}{3.1} \)

(12) \(f(5.01) = \frac{(5.01-1)(5.01-5)}{(5.01-3)(5.01-5)} = \frac{4.01}{2.01} \)

(13) \(f(5.001) = \frac{(5.001-1)(5.001-5)}{(5.001-3)(5.001-5)} = \frac{4.001}{2.001} \)

(15) \(\lim_{x \to 5^+} f(x) = 2 \) this agrees with the example that we did on page 4.
(16) \[f(4.9) = \frac{(4.9 - 1)(4.9 - 5)}{(4.9 - 3)(4.9 - 5)} = \frac{3.9}{1.9} \]

(17) \[f(4.99) = \frac{3.99}{1.99} \]

(18) \[f(4.999) = \frac{3.999}{1.999} \]

(20) Guess \(\lim_{x \to 5} f(x) = 2 \)

(21) Guess \(\lim_{x \to 5} f(x) = 2 \) this agrees with our result from example on page 41

Guessing the limit at \(x = 3 \). (Simplify your answers.)

(11) \[f(3.1) = \frac{(3.1 - 1)(3.1 - 5)}{(3.1 - 3)(3.1 - 5)} = \frac{2.1}{.1} = 21 \]

(12) \[f(3.01) = \frac{(3.01 - 1)(3.01 - 5)}{(3.01 - 3)(3.01 - 5)} = \frac{2.01}{.01} = 201 \]

(13) \[f(3.001) = \frac{2.001}{.001} = 2001 \]

(15) Guess \(\lim_{x \to 3^+} f(x) = \infty \) (See remarks on page 9)

(16) \[f(2.9) = \]

(17) \[f(2.99) = \]

(18) \[f(2.999) = \]

(20) Guess \(\lim_{x \to 3^-} f(x) = \)

(21) Guess \(\lim_{x \to 3} f(x) = \)
Observe

As \(x \) gets closer \(+\) close to 3 \(+\) from the right, the \(y \)-values get more \(+\) more positive without bound.

In section 2.1 we would have said that
\[
\lim_{{x \to 3^+}} f(x) \text{ DNE}
\]

But now in section 2.2 we will introduce a new terminology
\[
\lim_{{x \to 3^+}} f(x) = \infty
\]

The limit is infinity!