Fri Nov 6, 2015

Quiz 8 will be Mon Nov 9 at start of class.

one of the exercises 9.8 [47],[51],[67]

Starting Chapter 9 Euclidean Geometry I: Triangles

Notice Euclidean geometry Axioms

\[
\begin{align*}
\langle N1 \rangle & : \text{Neutral geom Axioms} \\
\langle N10 \rangle & : \text{Euclidean geom Axioms} \\
\langle EPA \rangle & : \text{Euclidean Parallel Axiom}
\end{align*}
\]

Since the Neutral geometry Axioms are all on the list of Euclidean geometry Axioms, any theorem that we proved using the Neutral geom Axioms will still be a valid theorem in EuclideanGeom.
So Th. 1 through Th. 96 are valid theorems in Euclidean geom.

Revisit the recurring questions in geometry (p. 30)

Recurring Question #1: Do parallel lines exist?
Recurring Question #2: Given line \(L \) and point \(P \) not on \(L \), how many lines exist that pass through \(P \) and are parallel to \(L \)?

Answer these in Neutral Geometry.

Start with Recurring Question #2.

Given line \(L \) and point \(P \) not on \(L \).

\[\begin{array}{c}
P \\
\end{array} \]
Consider this sequence of pictures

Given

Line M exists that passes through P and is perp. to L.

Line N exists that passes through P and is perp. to M.

Th. 74 is the Alternate Interior Angle Theorem of Neutral geometry.

We have used Neutral plane theorems to prove that there exists a line N that passes through P and is parallel to L. (at least one line)

Answer to recurring question #2 in Neutral geometry; there is at least one line.
Now what about Reconsider Question #1 in Neutral Geo.

1. Do parallel lines exist?

That is, without being given anything, can we prove that parallel lines exist?

Yes! Consider this.

1. Two distinct points \(A, B \) exist. (by neutral axiom \(N1 \)) \(A \neq B \)
2. There exists a line that passes through \(A, B \). We can call it line \(L \). \(A \in L \) \(B \in L \) (by axiom \(N2 \))
3. There exists a point that is not on line \(L \). We can call the point \(P \). (by axiom \(N3 \))
(5) Line M exists (by Th. 60)

(5) Line N exists (by Th. 86)

(6) $L \parallel N$ (by Th. 74)

End of proof
So in Neutral Geometry, the answers to the recurring questions are:

Question #1 Yes, parallel lines do exist.

Question #2 At least one line.

That is, if we let the variable \(n \) be the number of parallel lines that pass through \(P \) and are parallel to \(L \), then in Neutral Geometry, \(n \geq 1 \), at least one line.
Now switch to considering **Euclidean Geometry**

The Euclidean Parallel Axiom \(<EPA>\) tells us that \(n \leq 1\).

(Not more than one parallel)

Combine the facts that:

* \(n \geq 1\) (by Neutral Axiom Facts)
* \(n \leq 1\) (by \(<EPA>\))

And we get the \(P\) theorem

Theorem 97 In Euclidean Geometry, \(n = 1\).
Easy Corollaries

Th. 98 (corollary)

In Euclidean geometry,
If a line intersects one of two parallel lines,
then it also intersects the other.

That is,
If L, M are parallel and line T intersects M,
than T also intersects L.
Discuss Alternate Interior Angle Theorem and Its Converse

Th 7.74
The Alt Int Angle theorem (of Neutral geom)
Given lines L, M cut by transversal T.
If all interior angles are congruent then the lines are parallel.

Th 7.74 Neutral Geometry
The converse is not a theorem in Neutral Geometry. But it can be proven in Euclidean.

Theorem 100
Converse of Alternate Interior Angle Theorem
Given lines L, M cut by transversal T

If $L \parallel M$

Then alternate interior angles are congruent

Euclidean geometry