Quiz 7 will be in-class on Monday (Oct 26). You will be asked to illustrate and justify the steps in one of these theorems. (I will choose which theorem)

- Theorem 64: The Triangle Inequality
- Theorem 66: About perpendicular lines
- Theorem 71: The Hypotenuse-Leg Congruence Theorem

Continuing Section 7.3: Bigger vs. Smaller Parts of Triangles

So far we have proven:
\[CS \rightarrow CA \text{ Th. 52 } \]
\[CA \rightarrow CS \text{ Th. 55 } \]
\[BS \rightarrow BA \text{ Th. 61 } \]
Next: Theorem 62 \(BA \rightarrow BS \)

I will only discuss the proof structure.

Proof is interesting for three reasons:

- It gets by just recycling previous results. No new geometric drawings.
- It proves the contrapositive \(\neg BS \rightarrow \neg BA \).
- It uses proof by division into cases.

Read the proof in the book.

Combine the two theorems:

\[\text{Th.61 } BS \rightarrow BA \]
\[\text{Th.62 } BA \rightarrow BS \]

In any triangle, bigger angles are always opposite bigger sides.
Final Theorem from Section on Bigger & Smaller Parts in Triangles

Theorem 64: The Triangle Inequality

In Neutral geometry, the length of any side of any triangle is less than the sum of the lengths of the other two sides.

That is, for all non-collinear points A, B, C, the inequality $AC < AB + BC$ is true.

Study the proof in the book. This is one of the three candidates for a quiz question for Monday's Quiz.
Section 7.4 Advanced Topics. We will skip this chapter. (But we get to use the theorems.)

Section 7.5 Perpendicular lines.

There is a very fundamental pair of theorems about perpendicular lines.

Old Theorem 46 Existence and uniqueness of perpendicular lines in the case where some point P lies on line L.

New Theorem 66 Existence and uniqueness of perpendicular lines in the case where point P does not lie on L. This line exists and is unique.
Study the book proof work on the justification.
It could be one of the questions on Monday's quiz.
The proof is a very important style involving "mirror copies" of triangles.

Two easy Theorems

Theorem 67: The shortest segment from a point to a line is the perpendicular segment.

Proof: Exterior angle theorem gives us BABA tells us 90 Small Big

Perpendicular Segment non-perpendicular segment
This is also the key to proving Th. 68. In any right triangle, the hypotenuse is the longest side.

Now that we have theorem 66:

Given

We can introduce Triangle Altitudes

\[\text{Altitude Segment} \]

\[\text{Altitude Segment} \]

\[\text{Altitude Segment} \]

\[\text{Altitude line} \]
Section 7.6 A Final Look at Triangle Congruence in Neutral Geom

Th. 70 AAS Congruence

Proof is in book. We won't study it ("Advanced" Proof.)

Th. 71 HL Congruence (Hypotenuse-Leg Congruence)

This is the 3rd possibility of a problem for Monday's Quiz.
End of Lecture