MATH 3110

Monday Oct 5, 2015

Quiz 5 will be this Wednesday, Oct 7. It will cover ch 5.

Th. 30
If

Th. 31
If

then

then
Theorem 3.1 in Detail

Proof

1. Given angle \(\angle ABC \) and point \(D \) in interior.

2. \(D \) and \(C \) lie in same side of \(\overrightarrow{AB} \)
 (by definition of \(D \) being in angle interior)

3. Every point of ray \(\overrightarrow{BD} \) except \(B \) lies in that same half plane, on same side of \(\overrightarrow{AB} \) as \(C \).
 (by theorem 3.0 applied to ray \(\overrightarrow{BD} \) that has endpoint on line \(\overrightarrow{BA} \))
(4) Points D, A lie on same side of \(\overrightarrow{BC} \)
(by definition of what it means to say that D is in interior of angle \(\angle ABC \))

(5) All points of ray \(\overrightarrow{BD} \) except endpoint B lie on same side of line \(\overrightarrow{BC} \) as point A.
(by Thm. 3.B applied to ray \(\overrightarrow{BD} \) with endpoint on line \(\overrightarrow{BC} \))

(6) All points on ray \(\overrightarrow{BD} \) except endpoint B lie in interior of \(\angle ABC \)
(by statements (3), (5), all points on ray \(\overrightarrow{BD} \) except B lie in both of those half planes
so by definition of angle interior we can say that those points are in the interior
End of proof
Easy Construction

Th 32: about a segment with endpoint on a line.

If

then

Th 33

If

then

If
Proof

Th. 32 applied to segment \overline{AB} with endpoint on line \overline{BC}

Definition of angle $\angle BAC$
Theorem 35: The Crossbar Theorem
If D is in interior of \(\angle ABC \), then \(\overrightarrow{BD} \) intersects segment \(\overline{AC} \) at a point between \(A \) and \(C \).

If

then

End of lecture