Mon Sep 28, 2015

Leftover ideas about line segments & betweenness

Definition 25. Line segment \overline{AB}

idea: using a "good" coordinate function for \overrightarrow{AB}
that is, a coordinate function f such
that $f(A) = 0$ and $f(B)$ is positive.

the segment \overline{AB} is defined as the set

$$\overline{AB} = \{ P : P \in \overrightarrow{AB} \text{ such that } 0 \leq f(P) = f(B) \}$$

that is, $P \in \overline{AB}$ such that
either $P = A$ (so $f(P) = 0$)
or $A \neq P \neq B$ (so $0 < f(P) < f(B)$)
or $P = B$ (so $f(P) = B$)
Observe that if \(P \) is on segment \(\overline{AB} \) and \(P \) is known to \(\not\) be \(A \) or \(B \), then \(A \neq P \neq B \) is true.

Put this into a conditional statement

Suppose we are given that \(P \neq A \) and \(P \neq B \), then the following are equivalent:
(i) \(P \) is on segment \(\overline{AB} \)
(ii) \(A \neq P \neq B \).

Either both are true or both are false

Now discuss the statements of separation axiom \(\langle N_6 \rangle \)
Discuss Class Dr. 11

Proof of theorem 27

We are ready to justify statement (ii)

(a) Point D is in halfplane H_c (D & C are on same side of line)

To prove this we will need to prove that D passes the test has the property mentioned in the definition of H_c.

To prove this statement we have four possible tools:

Axiom $\langle N6\rangle^{(ii)}$

$\langle N6\rangle^{(ii)}$ contrapositive

$\langle N6\rangle^{(iii)}$

$\langle N6\rangle^{(iv)}$ contrapositive

Only this statement ends by saying two points are in same halfplane.

We need to use this axiom.
(N6) (iii) contrapositive says:

If \(\overline{PQ} \) does not intersect line \(L \),
then points \(P, Q \) are on same side of line \(L \).

Adapt that statement to our current situation:
we want to show that \(D, C \) are on same side of the line \(L \).

The tool that we can use is this version of
\(<N6> (iii) contrapositive:

If \(\overline{CD} \) does not intersect \(L \)
then \(C, D \) are on same side of \(L \).
So our strategy to prove \(C \neq D\) are on some side of line \(L\) should be the following:

- First somehow prove that \(CD\) does not intersect \(L\).
- Then use axiom (N6)(iii) contrapositive to say that therefore, \(C, D\) are on same side of \(L\).

 (In the same half-plane.)
Introduce point D.
(9) There exists a point such that $A * C * Point$. (Justify.)

(10) This point cannot be the same as any of our previous three points. (Justify.)

So it must be a new point. Call it D. So $A * C * D$.
(Make a new drawing.)

(11) Point D is in half-plane H_C. (Justify.)

Part 1

Prove that CD does not intersect line $L_1 = \overline{AB}$

Observe that A is on line CD because $A * C * D$.

We also know that A is on line L_1 from earlier.

So line CD and line L_1 intersect at A.

Theorem 1 says that two distinct lines that intersect can only intersect at one point.

So line CD and line L_1 only intersect at A.

And we know that A is not on segment CD because $A * C * D$.

Conclude that line L_1 and segment CD do not intersect.

Part 2

By axioms (N6)(iii) contrapositive, CD are on same side of line L_1.
Now look ahead in class drill 4.

Step (14) is similar to step 11.

Goal in step 14:
Prove that E is in half plane H.
That proves that E,C are on same side of line l.
Strategy will be same as for step 11.

- Prove that segment EC does not intersect line l.
- Then use Axiom (No)(iii) contrapositive to say that therefore, E,C are on same side of l.
Introduce point E.

(12) There exists a point such that $B \ast C \ast \text{Point}$.

(13) This must be a new point.

Call it E. So $B \ast C \ast E$.

(Make a new drawing.)

(14) Point E is in half-plane H_c.

Strategy: *Prove that segment EC does not intersect line L.
* Then use axiom $(N6)(iii)$ continuing to say that therefore, E, C are on same side of L.

Conclusion of Part I:

(15) Points C and D and E are non-collinear.

Remark: Notice that in steps (4), (11), (14) we saw that points C, D, E are in half-plane H_c.

Take-home Quiz (5 points) Due this coming Wed Sep 30

Illustrate & Justify the steps in the proof of Theorem 28 (Pasch’s Theorem)

End of Lecture