Today Ruler Placement

Section 3.10 Ruler Placement in High School Geometry Books

Theorem 10(4) Ruler Siding

Suppose \(f : L \rightarrow \mathbb{R} \) is a coordinate function for some line \(L \).

Suppose \(c \) is a real number constant.

Suppose \(g : L \rightarrow \mathbb{R} \) is a new function defined by \(g(P) = f(P) + c \).

Claim: The new function \(g \) is also qualified to be called a coordinate function for line \(L \).
Consider the proof structure necessary to prove this.

Proof

Suppose blah blah blah

all of the given stuff goes here

we need to fill in these steps.

Conclude that g is qualified to be called a coordinate function for line L.

End of proof.
But "coordinate function" is a defined term.

So to end by saying that g is a coordinate function, we will have to have proven that g meets all the requirements in the definition of coordinate function.

Proof structure now looks like this:

Proof

1. Suppose that (Given stuff)
2. Narrow down.
3. Show that g satisfies all the requirements listed in the definition of a coordinate function.
4. Conclude that g is a coordinate function.

End of Proof.
And to say that \(f \) is a coordinate function means that \(f \) satisfies all the requirements. That stuff must be written after \(f \) is introduced.

Proof structure now looks like this:

Proof

Given

- Line \(L \)
- Coordinate function \(f \) for line \(L \)
- Real number \(c \)
- Function \(g \) defined by \(g(P) = f(P) + c \)

f has certain properties

- \(f: L \rightarrow \mathbb{R} \)
- \(f \) is one-to-one and onto
- \(f \) satisfies equation \(d(P, Q) = |f(P) - f(Q)| \)

We must show that \(g: L \rightarrow \mathbb{R} \)

- \(g \) is one-to-one and onto
- \(g \) satisfies equation \(d(P, Q) = |g(P) - g(Q)| \)

End of proof.

We can conclude that \(g \) is a coordinate function (by definition of coordinate function).