Justify the steps in the proof of the following theorem:

Theorem 91 about points on the bisector of an angle in Neutral Geometry
Given: Neutral Geometry, angle $\angle BAC$, and point D in the interior of the angle
Claim: The following statements are equivalent
(i) D lies on the bisector of angle $\angle BAC$.
(ii) D is equidistant from the sides of angle $\angle BAC$.

Proof
(1) In Neutral Geometry, suppose that point D lies in the interior of angle $\angle BAC$. (Make a drawing.)

Proof that (i) \Rightarrow (ii)
(2) Suppose that (i) is true. That is, suppose that D lies on the bisector of angle $\angle BAC$. (Make a new drawing.)

(3) Let point E be the foot of the perpendicular from D to line \overrightarrow{AB}, and let point F be the foot of the perpendicular from D to line \overrightarrow{AC}. (Make a new drawing.)

(4) Then $\triangle DAE \cong \triangle DAF$. (Justify.) (Make a new drawing.)

(5) So $\overline{DE} \cong \overline{DF}$. (Justify.) (Make a new drawing.)

(6) Conclude that D is equidistant from the sides of angle $\angle BAC$. That is, (ii) is true.

Proof that (ii) \Rightarrow (i)
(7) Suppose that (ii) is true. That is, suppose that D is equidistant from the sides of angle $\angle BAC$. (Make a new drawing.)

(8) Let point E be the foot of the perpendicular from D to line \overrightarrow{AB}, and let point F be the foot of the perpendicular from D to line \overrightarrow{AC}. (Make a new drawing.)

(9) Then $\overline{DE} \cong \overline{DF}$. (Justify.) (Make a new drawing.)

(10) Then $\triangle DAE \cong \triangle DAF$. (Justify.) (Make a new drawing.)

(11) So $\angle DAE \cong \angle DAF$. (Justify.) (Make a new drawing.)

(12) Conclude that D lies on the bisector of angle $\angle BAC$. That is, (i) is true.
End of Proof