Class Drill 9: Drill for Section 7.7: The Alternate Interior Angle Theorem

Theorem 74 The Alternate Interior Angle Theorem for Neutral Geometry

Given: Neutral Geometry, lines L and M and a transversal T

Claim: If a pair of alternate interior angles is congruent, then lines L and M are parallel.

Contrapositive: If L and M are not parallel, then a pair of alternate interior angles are not congruent.

Proof (Indirect proof by method of contraposition)

1. Suppose that in Neutral Geometry, lines L and M and a transversal T are given, and that L and M are not parallel. *(make a drawing)*

2. Let A be the point of intersection of lines L and M, let B be the point of intersection of lines L and T, and let C be the point of intersection of lines M and T. *(update drawing)*

3. There exists a point D such that $A \ast B \ast D$. *(Make a new drawing)*

4. Observe that $\angle CBD$ is an exterior angle for $\triangle ABC$, and $\angle BCA$ is one of its remote interior angles. *(Make a new drawing)*

5. $m(\angle CBD) > m(\angle BCA)$. *(Justify.)* *(Make a new drawing)*

6. Observe $\angle CBD$ and $\angle BCA$ are alternate interior angles and they are not congruent. That is, lines L, M, T do not have the special angle property.

End of Proof