Class Drill 4: Drill for Section 5.1 Justifying and illustrating Steps in proof of Theorem 27

Theorem 27: Given any line, each of its half-planes contains at least three non-collinear points.

Proof

(1) Given any line, call it L_1. (Make a drawing.)

Introduce points A and B.

(2) There exist two distinct points on L_1. (Justify.)

Call them A and B. (Make a new drawing.)

Part I: Introduce Half-Plane H_C and show that it contains three non-collinear points.

(3) There exists a point not on L_1. (Justify.)

Call it C.

(Make a new drawing.)

(4) Point C lies in one of the two half-planes determined by line L_1. (Justify.)

Call it H_C.

(Make a new drawing.)
Introduce line L_2.

(5) There exists a unique line passing through A and C. (Justify.)

(6) The line passing through A and C is not L_1. (Justify.)

So it must be new. Call it L_2.

(Make a new drawing.)

Introduce line L_3.

(7) There exists a unique line passing through B and C. (Justify.)

(8) The line passing through B and C is not L_1 or L_2. (Justify.)

So it must be new. Call it L_3.

(Make a new drawing.)
Introduce point D.
(9) There exists a point such that $A \ast C \ast \text{Point}$. (Justify.)

(10) This point cannot be the same as any of our previous three points. (Justify.)

So it must be a new point. Call it D. So $A \ast C \ast D$.
(Make a new drawing.)

(11) Point D is in half-plane H_C. (Justify.)
Introduce point E.
(12) There exists a point such that $B \ast C \ast Point$. (Justify.)

(13) This must be a new point. (Justify.)

Call it E. So $B \ast C \ast E$.
(Make a new drawing.)

(14) Point E is in half-plane H_C. (Justify.)

Conclusion of Part I:
(15) Points C and D and E are non-collinear. (Justify.)

Remark: Notice that in steps (4), (11), (14) we saw that points C, D, E are in half-plane H_C.