Section 4.2 Concavity

Definition of Concavity at a particular x-value

Words: f is concave up at $x = c$

Meaning:
- f has a tangent line at $x = c$
- for x-values near c, the graph of f stays above the tangent line.

Graphical Examples:

- Concave up at $x = c$
- Concave up at $x = c$
- No concavity at $x = c$ because no tangent line
Definition of concavity on an interval

Words: \(f \) is concave up on the interval \((a, b)\)

Meaning: for every \(x = c \) where \(a < c < b \),
\(f \) is concave up at \(c \).

\[y = 13 \]
\[y = 7 \]

inflection point at \((x, y) = (5, 7)\)

and \((x, y) = (10, 13)\)

But no inflection point at \(x = 15 \) because there is no point there.
Relationship between 1st derivative & concavity

Sketch graph of f'

- $f' \uparrow \quad f' \uparrow$
- y small pos \quad y large pos
- y med pos
- m small pos \quad m media pos \quad m large pos
- m large neg
- m med neg
- m small neg

y neg close to zero
y med neg
y large neg

$f' \uparrow \quad f' \uparrow$
Relationship between 1st derivative & concavity:

- f' increasing on $(a,b) \implies f$ concave up on (a,b)
- f' decreasing on $(a,b) \implies f$ concave down on (a,b)
- f' constant on $(a,b) \implies f$ straight line on (a,b)

Class Drill 18
Class Drill 18: Using a graph of f' to get information about f

The graph of f' is shown at right.

(Note: This is not the graph of f.)

In this class drill, you will analyze the behavior of f' and use that information to write conclusions about the behavior of f, which is not shown.

Using those conclusions about f, you will then sketch a graph of f.

(A) Fill in the table below.

<table>
<thead>
<tr>
<th>x</th>
<th>sign of f' (circle one)</th>
<th>incr/decr behavior of f' (circle one)</th>
<th>conclusions about behavior of function f</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x < -3$</td>
<td>pos neg zero</td>
<td>incr decr horiz tan</td>
<td>f increasing, concave down</td>
</tr>
<tr>
<td>$x = -3$</td>
<td>pos neg zero</td>
<td>incr decr horiz tan</td>
<td>f horiz tangent, inflection</td>
</tr>
<tr>
<td>$-3 < x < 1$</td>
<td>pos neg zero</td>
<td>incr decr horiz tan</td>
<td>f increasing, concave up</td>
</tr>
<tr>
<td>$x = 1$</td>
<td>pos neg zero</td>
<td>incr decr horiz tan</td>
<td>f increasing, inflection</td>
</tr>
<tr>
<td>$1 < x < 4$</td>
<td>pos neg zero</td>
<td>incr decr horiz tan</td>
<td>f increasing, concave down</td>
</tr>
<tr>
<td>$x = 4$</td>
<td>pos neg zero</td>
<td>incr decr horiz tan</td>
<td>f horiz tangent, concave down</td>
</tr>
<tr>
<td>$4 < x$</td>
<td>pos neg zero</td>
<td>incr decr horiz tan</td>
<td>f decreasing, concave down</td>
</tr>
</tbody>
</table>

(B) Sketch a possible graph of f at right.
Notice that it is useful to know when \(f' \) is increasing or decreasing because that tells us about concavity behavior of \(f \).

So if we study the derivative of \(f' \) and see when it is positive or negative, that will tell us when \(f' \) is increasing/decreasing that will tell us when \(f \) is concave up/down.

So we want to study the derivative of \(f' \).
This brings us to **The Second derivative**.

Definition

Symbol: \(f''(x) \)

Spoken: the second derivative of \(f \).

Meaning: \(\frac{d}{dx} \left(\frac{df}{dx} \right) \) that is \(\frac{d^2 f}{dx^2} \)

Alternate symbol: \(\frac{d^2 f(x)}{dx^2} \)
Examples of second derivatives

Example #1 \(f(x) = \ln(x^2 + 6x + 13) \) find \(f''(x) \)

Solution:
\[
f'(x) = \frac{d}{dx} \ln(x^2 + 6x + 13)
\]
\[
= \frac{1}{x^2 + 6x + 13} \cdot (2x + 6)
\]
\[
= \frac{2x + 6}{x^2 + 6x + 13}
\]

Chain rule details:
inner(x) = \(x^2 + 6x + 13 \)
inner'(x) = \(2x + 6 \)
outer() = \(\ln() \)
outer'() = \(\frac{1}{()} \)
\[f''(x) = \frac{d}{dx} f'(x) = \frac{d}{dx} \frac{2x+6}{x^2+6x+13} \]

\[
= \frac{\left(\frac{d}{dx}(2x+6)\right)(x^2+6x+13) - (2x+6)\left(\frac{d}{dx}(x^2+6x+13)\right)}{(x^2+6x+13)^2}
\]

\[
= \frac{2(x^2+6x+13) - (2x+6)(2x+6)}{(x^2+6x+13)^2}
\]

\[
= \frac{2x^2+12x+26 - (4x^2+24x+36)}{(x^2+6x+13)^2}
\]

\[
= \frac{-2x^2-12x-10}{(x^2+6x+13)^2} = \frac{-2(x^2+6x+5)}{(x^2+6x+13)^2} = f''(x)
\]

End of Lecture