Wed Sept 2, 2015

Quiz will start as soon after 11:50 as possible, whenever all your stuff is put away.

When you finish, please turn your quiz face down and sit quietly. (No Phones.)

Quiz ends at 12:20
Studying sign behavior of functions

Function \(f \) can only change sign at these kinds of important \(x \)-values

- \(x \) value where \(f(x) = 0 \) (\(x \)-intercept)
- \(x \) value where \(f \) is discontinuous

Define these to be the Partition Numbers for \(f \)

In between partition numbers, the sign of \(f \) does not change.
Example for $f(x) = 9x^2 - 90x + 189$

Determine the sign behavior of f.

Solution: find the partition numbers.

Notice f is polynomial, so it is always continuous.
The only partition numbers will be the x-coordinate of the x-intercepts.
That is find all x such that $f(x) = 0$

Turn this around

$0 = f(x)$

$= 9x^2 - 90x + 189$

$= 9(x^2 - 10x + 21)$

$= 9(x - 3)(x - 7)$

factor out a 9.
Check:
\[(x-3)(x-7) = x^2 - 3x - 7x + 21\]
\[= x^2 - 10x + 21\]

\[9(x-3)(x-7) = 9(x^2 - 10x + 21)\]
\[= 9x^2 - 90x + 189\]

So partition numbers are \[x = 3\] \[x = 7\]

\[x = 9\]
Not a partition number. It does not cause \(f(x)\) to be 0.
Sign chart for $f(x) = 9x^2 - 90x + 189 = 9(x-3)(x-7)$

<table>
<thead>
<tr>
<th>Important intervals and x-values</th>
<th>9</th>
<th>Sign of factors</th>
<th>Sign of $f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x < 3$</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>$3 < x < 7$</td>
<td>$+$</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>$7 < x$</td>
<td>$+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>Partition $x = 3$</td>
<td>$+$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Partition $x = 7$</td>
<td>$+$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
(B) Solve the inequality \(9x^2 - 90x + 189 \geq 0 \)

Solution: Using sign chart

\[x \leq 3 \text{ or } 7 \leq x \]

\[(-\infty, 3] \cup [7, \infty) \]

Example 2: Solve the inequality

\[9x^2 - 90x \geq -189 \]
Solution: Add 189 to both sides

\[9x^2 - 90x + 189 = 0 \]

This is the problem that we just solved.

Example: Solve the inequality \(\frac{x^2 - 5x}{x - y} \leq 0 \)

Solution: Factor the function

\[\frac{x^2 - 5x}{x - y} = \frac{x(x-5)}{x - y} \]

Partition numbers:

- \(x = 0 \) causes \(y = 0 \)
- \(x = 5 \) causes \(y = 0 \)
- \(x = y \) is discontinuous there
Sign chart for $f(x) = \frac{x(x-5)}{x-4}$

<table>
<thead>
<tr>
<th>x-values</th>
<th>x</th>
<th>$x-5$</th>
<th>$f(x)$</th>
<th>$f(x)$</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x < 0$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>neg</td>
</tr>
<tr>
<td>$x = 0$</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>$0 < x < 4$</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>pos</td>
</tr>
<tr>
<td>$x = 4$</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>DNE</td>
</tr>
<tr>
<td>$4 < x < 5$</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>neg</td>
</tr>
<tr>
<td>$x = 5$</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>$5 < x$</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>pos</td>
</tr>
</tbody>
</table>
Solution to the inequality $f(x) \leq 0$ is $x = 0$ or $4 < x \leq 5$.

Inequality notation: $x \leq 0$ or $4 < x \leq 5$

Interval notation: $(-\infty, 0] \cup (4, 5]$