Wed Aug 26, 2015

Quiz: Please put away all books + notes. Turn cell phone ringers off + stow away.

Review yesterday's example

Function \(f(x) = \frac{x^2 - 2x - 3}{x - 3} = \frac{(x-3)(x+1)}{(x-3)} \)

\(f(x) = \begin{cases}
 x + 1 & \text{when } x \neq 3 \\
 \text{undefined} & \text{when } x = 3
\end{cases} \)

Compare that to the function \(g(x) = x + 1 \)

Domain: all \(x \neq 3 \)

Domain: all real numbers

Graphs:

- For \(f(x) \):
 - Hole at (3, 4)
 - Line: \(y = 4 \)
 - Points: (0, 1), (1, 2)

- For \(g(x) \):
 - Line: \(y = x + 1 \)
 - Points: (0, 1), (1, 2)
 - \(g(3) = 4 \)
So yesterday's example $f(3) = \frac{0}{0}$ DNE

$$\lim_{{x \to 3}} f(x) = 4$$

Section 2.2 Limits Involving Infinity

Consider the function $f(x) = \frac{1}{(x-3)^2}$

Find the y-value $f(3)$

Solution $f(3) = \frac{1}{(3-3)^2} = \frac{1}{0^2} = \frac{1}{0}$ DNE

Find the limit $\lim_{{x \to 3}} f(x)$ using Section 2.1 techniques

$$\lim_{{x \to 3}} f(x) = \lim_{{x \to 3}} \frac{1}{(x-3)^2}$$

Observe limit of numerator is $\lim_{{x \to 3}} 1 = 1$

Limit of denominator is $\lim_{{x \to 3}} (x-3)^2 = 0$

So limit does not exist using Section 2.1 techniques. (by Theorem 7)
But consider y-values for x values near 3.

<table>
<thead>
<tr>
<th>x</th>
<th>(f(x) = \frac{1}{(x-3)^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>(f(3.1) = \frac{1}{(3.1-3)^2} = \frac{1}{(0.1)^2} = \frac{1}{0.01} = 100)</td>
</tr>
<tr>
<td>3.01</td>
<td>(f(3.01) = \frac{1}{(3.01-3)^2} = \frac{1}{(0.01)^2} = \frac{1}{0.0001} = 10,000)</td>
</tr>
<tr>
<td>3.001</td>
<td>(f(3.001) = \frac{1}{(3.001-3)^2} = \frac{1}{(0.001)^2} = \frac{1}{0.000001} = 1,000,000)</td>
</tr>
</tbody>
</table>

Notice as \(x \to 3^+ \), the values of \(f(x) \) get more and more positive, without bound.

Abbreviation: \(\lim_{x \to 3^+} f(x) = \infty \)

Spoken: "the limit, as \(x \) approaches 3 from the right, of \(f(x) \) is infinity"
Similarly find \(\lim_{{x \to 3^-}} f(x) \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9</td>
<td>(f(2.9) = \frac{1}{(2.9-3)^2} = \frac{1}{(-.1)^2} = \frac{1}{.01} = 100)</td>
</tr>
<tr>
<td>2.99</td>
<td>(f(2.99) = \cdots = 10,000)</td>
</tr>
<tr>
<td>2.999</td>
<td>(f(2.999) = \cdots = 1,000,000)</td>
</tr>
</tbody>
</table>

Conclude \(\lim_{{x \to 3^-}} f(x) = \infty \) as well. \(f(x) = \frac{1}{(x-3)^2} \)

Conclude \(\lim_{{x \to 3}} f(x) = \infty \).

Remember: under old definition of limit, the limit did not exist.

Now Do Class Drill 3
Class Drill 3: Guessing Limits by Substituting in Numbers

Without using a calculator, answer the following questions about the function

\[f(x) = \frac{x^2 - 6x + 5}{x^2 - 8x + 15} \]

Part 1: Function Values

(1) Factor \(f \). (Check your factorizations by multiplying.)

\[f(x) = \frac{(x-5)(x-1)}{(x-5)(x-3)} \]

Check: \((x-5)(x-1) = x^2 - 5x - x + 5 = x^2 - 6x + 5 \)

(\(x-5)(x-3) = x^2 - 5x - 3x + 15 = x^2 - 8x + 15 \)

(2) Are you allowed to cancel factors in the factored form of \(f \)? Explain why you think you are allowed to cancel, or why you are not.

Cannot cancel factors, because we don't know the value of \(x \), so we don't know if \(x-5 \neq 0 \).

(3) Find \(f(1) \) by substituting \(x = 1 \) into the factored version of \(f \).

\[f(1) = \frac{(1-5)(1-1)}{(1-5)(1-3)} = \frac{0}{-2} = 0 \]

(4) Find \(f(3) \) by substituting \(x = 3 \) into the factored version of \(f \).

\[f(3) = \frac{(3-5)(3-1)}{(3-5)(3-3)} = \frac{2}{0} \text{ DNE} \]

(5) Find \(f(5) \) by substituting \(x = 5 \) into the factored version of \(f \).

\[f(5) = \frac{(5-5)(5-1)}{(5-5)(5-3)} = \frac{0(4)}{0(2)} = 0 \text{ DNE} \]

Part 2: Limits

Using the factored form of \(f \), compute the following values and guess the limits.

Guessing the limit at \(x = 5 \).

(Just leave answers as an expression ready to type into a calculator.)

(11) \(f(5.1) = \frac{(5.1-5)(5.1-1)}{(5.1-5)(5.1-3)} = \frac{4.1}{2.1} \)

(12) \(f(5.01) = \frac{(5.01-5)(5.01-1)}{(5.01-5)(5.01-3)} = \frac{4.01}{2.1} \)

(13) \(f(5.001) = \frac{(5.001-5)(5.001-1)}{(5.001-5)(5.001-3)} = \frac{4.001}{2.001} \)

(15) \(\lim_{x \to 5^+} f(x) = 2 \because \text{numerator} \to 4 \text{ while denominator} \to 2 \)
(16) \(f(4.9) = \frac{(4.9 - 5)(4.9 - 1)}{(4.9 - 5)(4.9 - 3)} = \frac{3.9}{1.9} \)

(17) \(f(4.99) = \frac{(4.99 - 5)(4.99 - 1)}{(4.99 - 5)(4.99 - 3)} = \frac{3.99}{1.99} \)

(18) \(f(4.999) = \frac{(4.999 - 5)(4.999 - 1)}{(4.999 - 5)(4.999 - 3)} = \frac{3.999}{1.999} \)

(20) Guess \(\lim_{x \to 5^-} f(x) = 2 \) because numerator \(\to 4 \) and denominator \(\to 2 \)

(21) Guess \(\lim_{x \to 5} f(x) = 2 \) because the left and right limits are both 2.

Guessing the limit at \(x = 3 \). (Simplify your answers.)

(11) \(f(3.1) = \frac{(3.1 - 5)(3.1 - 1)}{(3.1 - 5)(3.1 - 3)} = \frac{2.1}{0.1} = 21 \)

(12) \(f(3.01) = \frac{(3.01 - 5)(3.01 - 1)}{(3.01 - 5)(3.01 - 3)} = \frac{2.01}{0.01} = 201 \)

(13) \(f(3.001) = \frac{(3.001 - 5)(3.001 - 1)}{(3.001 - 5)(3.001 - 3)} = \frac{2.001}{0.001} = 2001 \)

(15) Guess \(\lim_{x \to 3^+} f(x) = \infty \) because the values are getting more positive without bound.

(16) \(f(2.9) = \frac{(2.9 - 5)(2.9 - 1)}{(2.9 - 5)(2.9 - 3)} = \frac{-1.9}{-1} = -19 \)

(17) \(f(2.99) = \frac{(2.99 - 5)(2.99 - 1)}{(2.99 - 5)(2.99 - 3)} = \frac{1.99}{-0.01} = -199 \)

(18) \(f(2.999) = \frac{(2.999 - 5)(2.999 - 1)}{(2.999 - 5)(2.999 - 3)} = \frac{1.999}{-0.001} = -1999 \)

(20) Guess \(\lim_{x \to 3^-} f(x) = -\infty \) because the y-values are getting more negative without bound.

(21) Guess \(\lim_{x \to 3} f(x) = \text{DNE} \) because the left and right limits don't match.