More from Section Three. IV. 1

The Transpose

Definition of transpose

Symbol: M^T
Usage: M is a matrix
Spoken: the transpose of M
Meaning: M^T is the matrix that results from interchanging the rows and columns of M.
(1^{st} row becomes 1^{st} column, etc.)

Formula for M^T: If M is an $m \times n$ matrix, then M^T is the $n \times m$ matrix whose entries are $(M^T)_{ij} = M_{ji}$ for $i = 1 \ldots n$ and $j = 1 \ldots m$

Example 1: If $M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ then $M^T = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$
Example #2 If \(M = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \) then \(M^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \)

Notice if \(M \) is \(m \times n \) matrix, then \(M^T \) will be \(n \times m \)

Function Notation for the transpose, \((\,)^T: M_{m \times n} \rightarrow M_{n \times m}\)

Obvious questions: ① Is \((\,)^T\) linear? (homomorphism?)
③ Is \((\,)^T\) one-to-one? yes
④ Is \((\,)^T\) onto?

Cool observation \(((M)^T)^T = M\)

in function notation \((f \circ (\,)^T)^T = \text{identity map} \)

\(((f)^T)^T = \text{id} \)
So the transpose map is its own inverse. Functions can only have inverses if they are one-to-one and onto. So transpose must also be onto.

More Direct proof that transpose is onto

Given any desired output matrix $Y \in \mathbb{R}^{m \times n}$

Use input matrix $X = Y^T$

Then notice that the resulting output will be

$$(X^T)^T = (Y^T)^T = Y$$

We have found an input X such that $(X)^T = Y$.

So the transpose map is onto.
Group work: Prove that \((C)^T\) is linear. (using abstract symbols)

Prove that if \(A, B \in \mathbb{M}_{m \times n}\) and \(\gamma_1, \gamma_2 \in \mathbb{R}\)

then prove that ...

\[
\left(\gamma_1 A + \gamma_2 B\right)^T = \gamma_1 A^T + \gamma_2 B^T
\]

These are matrices. Prove that they are equal by showing that their entries are all equal.

\[
\left(\left(\gamma_1 A + \gamma_2 B\right)^T\right)_{ij} = \left(\gamma_1 A + \gamma_2 B\right)_{ji} \quad \text{definition of transpose}
\]

\[
= \left(\gamma_1 A\right)_{ji} + \left(\gamma_2 B\right)_{ji} \quad \text{def of matrix addition}
\]

\[
= \gamma_1 \left(\left(A\right)_{ji}\right) + \gamma_2 \left(\left(B\right)_{ji}\right) \quad \text{def of scalar mult of matrices}
\]

\[
= \gamma_1 \left(\left(A^T\right)_{ij}\right) + \gamma_2 \left(\left(B^T\right)_{ij}\right) \quad \text{def of transpose}
\]

\[
= \left(\gamma_1 A^T\right)_{ij} + \left(\gamma_2 B^T\right)_{ij} \quad \text{def of scalar mult}
\]
So the matrices are equal:

\[\mathbf{r}_1 \mathbf{A}^T + \mathbf{r}_2 \mathbf{B}^T = \mathbf{r}_1 \mathbf{A}^T + \mathbf{r}_2 \mathbf{B}^T \]

What is the kernel of the transpose function?
(The null space) is the \(\mathbf{0} \) vector
\[\mathbf{0}_{\text{vec}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \]

What is the nullity? A basis for

More properly, the null space is \(\mathbb{E} \to \mathbb{B} \)

the trivial subspace of \(\mathbb{M}_{\text{vec}} \)

A basis for this null space is the empty set.

So the nullity of the transpose function is 0.
What is the range + rank of $(c)^T : M_{mxn} \rightarrow M_{mxm}$

What is the range, $R(c)^T$?

We know $(c)^T$ is onto so the range, the set of all outputs, is the whole codomain M_{mxm}.

$$R(c)^T = M_{mxm}$$

A basis for that space is

$$B = \left\langle \left(\begin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \end{array} \right), \ldots, \left(\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 1 \end{array} \right) \right\rangle$$

This basis has mn elements.

So rank of transpose map = dimension of M_{mxm}

$$= n \times m$$

End of lecture.