[1] Define map \(f : \mathcal{P}_2 \rightarrow \mathcal{P}_3 \) by \(f(p(x)) = x \cdot p(x) \). For example, \(f(5 + 4x - x^2) = x \cdot (5 + 4x - x^2) \)
Which of these vectors are in the range space of \(f \)? Explain. (If you think a vector is in the range space, you have to give an example of an input vector that will produce that vector as an output.)
(a) \(\vec{v}_a = x^2 \)
(b) \(\vec{v}_b = 2x + 13x^2 \)
(c) \(\vec{v}_c = 2 + 13x^2 \)
(d) \(\vec{v}_d = 0 \)
(e) \(\vec{v}_e = 2 \)

Solution:
(a) Observe that \(f(x) = x \cdot x = x^2 = \vec{v}_a \), so \(\vec{v}_a = x^2 \) is in the range space.
(b) Observe that \(f(2 + 13x) = x \cdot (2 + 13x) = 2x + 13x^2 = \vec{v}_b \), so \(\vec{v}_b = 2x + 13x^2 \) is in the range.
(c) Observe that there is no polynomial \(p(x) \) such that \(f(p(x)) = x \cdot p(x) = 2 + 13x^2 = \vec{v}_c \).
So \(\vec{v}_c = 2 + 13x^2 \) is not in the range.
(d) Observe that \(f(0) = x \cdot (0) = 0 = \vec{v}_d \), so \(\vec{v}_d = 0 \) is in the range.
(e) Observe that there is no polynomial \(p(x) \) such that \(f(p(x)) = x \cdot p(x) = 2 = \vec{v}_e \).
So \(\vec{v}_e = 2 \) is not in the range.

For each map in problems [2], [3], [4], answer the following:
(a) Is the map onto? (Explain)
(b) Find the range space. (Explain) (The definition of range space is on page 192.)
(c) Find a basis for the range space. (Explain)
(d) Find the rank of the map. (Explain) (The definition of range space is on page 192.)

[2] The map \(f : \mathcal{P}_2 \rightarrow \mathcal{P}_3 \) by \(f(p(x)) = x \cdot p(x) \) that was introduced in problem [1].
(a) The map is not onto. We found, for example, that \(\vec{v}_c = 2 + 13x^2 \) is not in the range space.
(b) The range space is \(\mathcal{R}(f) = \{ax + bx^2 + cx^3 | a, b, c \in \mathbb{R} \} \)
(c) A basis for the range space could be \(\beta = \{x, x^2, x^3 \} \).
(d) Since a basis for \(\mathcal{R}(f) \) has three basis vectors, we conclude that \(\text{rank}(f) = \text{dim}(\mathcal{R}(f)) = 3 \).

[3] The differentiation map \(D : \mathcal{P}_2 \rightarrow \mathcal{P}_2 \) defined by \(D(f) = \frac{d}{dx} f(x) \)
(a) The map is not onto. Consider the desired output vector \(\vec{y} = x^2 \). There is no 2nd degree polynomial \(f \) such that \(D(f) = \vec{y} = x^2 \), because if \(f \) has degree 2 (or less), then \(D(f) \) will have degree 1 (or less).
(b) The range space is \(\mathcal{R}(D) = \{a + bx | a, b \in \mathbb{R} \} = \mathcal{P}_1 \).
(c) A basis for the range space could be \(\beta = \{1, x \} \).
(d) Since a basis for \(\mathcal{R}(D) \) has three basis vectors, we conclude that \(\text{rank}(D) = \text{dim}(\mathcal{R}(D)) = 2 \).

[4] The map \(f : \mathbb{R}^2 \rightarrow \mathcal{P}_2 \) defined by \(f \left(\begin{array}{c} a \\ b \end{array} \right) = 2bx - 5bx^2 \)
(a) The map is not onto. Consider the desired output vector \(\vec{y} = 1 \). There is no input vector \(\vec{x} = \left(\begin{array}{c} a \\ b \end{array} \right) \) such that \(f \left(\begin{array}{c} a \\ b \end{array} \right) = 2bx - 5bx^2 = 1 = \vec{y} \).
(b) The range space is \(\mathcal{R}(f) = \{b(2x - 5x^2) | b \in \mathbb{R} \} \).
(c) A basis for the range space could be \(\beta = \{2x - 5x^2 \} \).
(d) Since a basis for \(\mathcal{R}(f) \) has one basis vector, we conclude that \(\text{rank}(f) = \text{dim}(\mathcal{R}(f)) = 1 \).

[5] The map \(g : \mathcal{M}_{2 \times 2} \rightarrow \mathbb{R} \) defined by \(f \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = a + b + c + d \).
(a) The map is onto. Consider the desired output vector \(\vec{y} = r \in \mathbb{R} \). Let the input vector be \(\vec{x} = \left(\begin{array}{c} r \\ 0 \end{array} \right) \).
Observe that \(g(\vec{x}) = g \left(\begin{array}{c} r \\ 0 \end{array} \right) = r + 0 + 0 + 0 = r = \vec{y} \).
(b) The range space is \(\mathcal{R}(g) = \mathbb{R} \).
(c) A basis for the range space could be \(\beta = \{1 \} \).
(d) Since a basis for \(\mathcal{R}(g) \) has one basis vector, we conclude that \(\text{rank}(g) = \text{dim}(\mathcal{R}(g)) = 1 \).