Geometry Group Work: Similarity #1

In the figure, $AB = 5$, $AC = 4$, $BE = 7$, $CD = x$, $DE = y$, and $\angle ACB \cong \angle AED.$

[1] Identify two similar triangles and explain how you know that they are similar. Draw them here with matching orientations.

In the figure at right,

- $AB = AC = x$
- $BC = BD = 1$

Find $\frac{\text{Area}(\triangle ABC)}{\text{Area}(\triangle BCD)}$ in terms of x. Show all steps that lead to your answer.

Hint: Each triangle has two congruent sides. Cite a theorem to identify congruent angles. Then identify two similar triangles. (Draw them side-by-side with the same orientation.)
Refer to the drawing at right, which is not drawn to scale.

\[x = AD \]
\[DB = 3 \]
\[BC \parallel DE \]
\[\text{Area}(\Delta ABC) = 16 \text{Area}(\Delta ADE) \]

Find \(x \). Show your work.
Geometry Group Work: Similarity #4

A regular hexagon called hex_1 has sides of length x. A second hexagon called hex_2 is created by joining the midpoints of the sides of hex_1. Find the value of the ratio.

\[
\frac{\text{Area}(hex_1)}{\text{Area}(hex_2)}
\]

Show your work.
Refer to the drawing at right. Find y in terms of x.

Hint: Start by identifying two similar triangles. Be sure to explain how you know that they are similar, and be sure to draw the triangles side-by-side with the same orientation and with all known parts labeled.