
For a triangle with vertices A, B, C. The opposite sides have length a, b, c,

The Law of Cosines says:

$$c^2 = a^2 + b^2 - 2ab \cos(C)$$

The Law of Sines says:

$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$

Suppose that a triangle has vertices X, Y, Z and the opposite sides have length x, y, z.

#1: Given x, y, z, find X, Y, Z. (Give formulas for each.)

#2: Given x, y, Z, find X, Y, z. (Give formulas for each.)

#3: Given x, y, X, find Y, Z, z. (Give formulas for each.)

#4: Given X, Y, z, find x, y, Z. (Give formulas for each.)

#5: Given X, Y, x, find y, z, Z. (Give formulas for each.)