(A) Let \(f(x) = 12 \ln \left(\frac{13}{x} \right) \). Find \(f'(x) \). Hint: Start by rewriting \(f \) using a rule of logarithms.

(B) Let \(f(x) = 12 \ln(x^{13}) \). Find \(f'(x) \). Hint: Start by rewriting \(f \) using a rule of logarithms.

(C) Let \(f(x) = 12x \ln(13) \). Find \(f'(x) \).
The goal is to find the equation of the line tangent to the graph of the function

$$f(x) = 5 + \ln(x^3)$$

at the point where $x = e^2$.

Remember that the approach is to build the general form of the equation for the tangent line (in point-slope form):

$$\left(y - f(a)\right) = f'(a) \cdot (x - a)$$

Part I Get Parts

Identify the number a.

Find $f(a)$.

Find $f'(x)$. Hint: Start by rewriting f using a rule of logarithms.

Find $f'(a)$.

Part II Substitute Parts Into the Equation

Substitute the parts that you have found into the tangent line equation. Then convert your equation to slope intercept form.