The Extreme Value Theorem says that if a function f is continuous on a closed interval $[a,b]$, then f will have both an absolute maximum and an absolute minimum on that interval. In this drill, you investigate what can happen when f is not continuous or the interval is not closed.

The graph of a function f is shown at right. Fill in the table below.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Relative Maxima in that interval</th>
<th>Relative Minima in that interval</th>
<th>Absolute Max in that interval</th>
<th>Absolute Min in that interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>[6,15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6,15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8,15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2,12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2,12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4,∞)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>