The graph of a function f is shown below.

(1) At which x-values is f zero?

(2) On what intervals is f positive?

(3) On what intervals is f negative?

(4) At which x-values is the line tangent to the graph of f horizontal?

(5) On what intervals is f increasing?

(6) On what intervals is f decreasing?

(7) On what intervals is f concave up?

(8) On what intervals is f concave down?

(9) At which x-values is f not concave?

(10) At which x-values does f have a point of inflection?
Part 2: Using a graph of \(f' \) to answer questions about \(f \)

The graph of \(f' \) is shown below. (Note: this is not the graph of \(f \! \) !)

(1) At which \(x \)-values is \(f \) zero? (Trick question)

(2) On what intervals is \(f \) positive? (Trick question)

(3) On what intervals is \(f \) negative? (Trick question)

(4) At which \(x \)-values is the line tangent to the graph of \(f \) horizontal?

(5) On what intervals is \(f \) increasing?

(6) On what intervals is \(f \) decreasing?

(7) At which \(x \)-values does \(f \) have a local max?

(8) At which \(x \)-values does \(f \) have a local min?

(9) On what intervals is \(f \) concave up?

(10) On what intervals is \(f \) concave down?

(11) At which \(x \)-values does \(f \) have a point of inflection?