More topics from Section 3–5

Using the Sum & Constant Multiple Rule

<table>
<thead>
<tr>
<th>y' for $y = \frac{17x^6}{5} + \frac{17x}{5x} + \frac{17}{5x^5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'(x) for $y = \frac{2\sqrt{x}}{7} - \frac{3}{11x^{2/5}}$.</td>
</tr>
</tbody>
</table>

Tangent line problems

underlying theory

Things that we know about the line tangent to the graph of f at $x = a$.
- The point $(x, y) - (a, f(a))$ is on the tangent line. (It is the point of tangency.)
- The tangent line has slope $m = f'(a)$.

Therefore, the equation for the tangent line is $(y - f(a)) = f'(a)(x - a)$.

Tangent Line Problem

Let $f(x) = x^4 - 6x^2 + 10$.
(A) Find $f'(x)$
(B) Find slope of the line tangent to graph of f at $x = -1$. Confirm with computer graph.
(C) Find equation of line tangent to graph of f at $x = -1$.
(D) Find the value(s) of x where the tangent line is horizontal. (Discuss the correct way of solving $4x^3 - 12 = 0$.)
Thursday, February 3, 2011 (Day 18)

Using the Sum & Constant Multiple Rule

\[f(x) = \frac{17x^6}{5} + \frac{17x}{5} + \frac{17}{5x} + \frac{17}{5x^6} \]

Find \(f'(x) \)

Solution: Rewrite \(f(x) \) as constants times powers of \(x \).

\[f(x) = \left(\frac{17}{5} \right) x^6 + \left(\frac{17}{5} \right) x + \left(\frac{17}{5} \right) x^{-1} + \left(\frac{17}{5} \right) x^{-6} \]

\[= \left(\frac{17}{5} \right) \left(x^6 + x + x^{-1} + x^{-6} \right) \]
\[
\frac{d}{dx} \left(\frac{17}{5} \left(x^6 + x + x^{-1} + x^{-6} \right) \right) = \frac{17}{5} \left(6x^5 + 1 + x^{-2} - 6x^{-7} \right)
\]
Example \[f(x) = 2 \sqrt[5]{x} \]

Find \(f'(x) \)

Solution

Rewrite \(f(x) \)

First, rewrite \(f(x) \) as

\[f(x) = (3/5)x^{3/5} - (3/7)x^{1/7} \]

Using the Constant Multiple Rule

\[f'(x) = \frac{2}{5} x^{-2/5} - \frac{3}{7} x^{-6/7} \]
\[
\frac{3}{11} \left(\frac{2}{3} \right)^{\frac{2}{11}}
+ \frac{6}{55}
+ \frac{6}{55} \times 3^{\frac{2}{11}}
\]

\[
\frac{2}{7}
= \left(\frac{2}{7} \right)^{\frac{4}{7}} \times 3^{\frac{4}{7}}
\]

\[
\frac{2}{35}
= \left(\frac{2}{35} \right)^{\frac{4}{35}}
\]
The line has slope \(m = 5 \).

Of tangency, tangent line, \(f(x) \) is the point

The point \((x, y) = (a, f(a)) \) is on the

We know the things:

At the point where \(x = a \)

Is tangent to the graph of \(f(x) \)

What do we know about the line that

\text{Underlying Piece}

\text{Tangent Line Problems}
Get equation for tangent line.

In general, if you know that a line has slope \(m \) and passes through the point \((x, y) = (a, b) \), then the "point-slope" form of the equation of the line is

\[
(y - b) = m(x - a)
\]

In our case, \(b = f(a) \) and \(m = f'(a) \)

\[
(y - f(a)) = f'(a)(x - a)
\]

Equation for the line tangent to graph of \(f \) at \(x = a \)
Tangent Line Problem

\(f(x) = x^2 - 6x^2 + 10 \)

(A) find \(f'(x) \)

\(f'(x) = \frac{d}{dx} (x^2 - 6x^2 + 10) \)

\(f'(x) = 2x - 12x \)

Solution:

\(f'(x) = 0 \)

\(x = \pm \sqrt{6} \)

\(y = 4x^2 - 12x \)
(B) Find the slope of the line tangent to graph of \(f \) at \(x = -1 \).

Solution: \[m = f'(-1) \]
\[= 4(-1)^3 - 12(-1) \]
\[= 4(-1) + 12 \]
\[m = 8 \]

(C) Find the equation of the line tangent to graph of \(f \) at \(x = -1 \).

Solution: We need to build this:
\[(y - f(a)) = f'(a)(x-a) \]
Get parts for the equation.

\[a = -1 \]

\[
\begin{align*}
f(a) &= f(-1) = (-1)^y - 6(-1)^2 + 10 \\
&= 1 - 6(1) + 10 \\
&= 5
\end{align*}
\]

\[
f'(a) = f'(-1) = 8 \quad \text{From part (B)}
\]

Substitute parts into the equation:

\[
(y - 5) = 8(x - (-1))
\]

Convert to slope-intercept form.
\[
y - 5 = 8(x + 1) \\
y - 5 = 8x + 8 \\
y = 8x + 13
\]

Equation of the tangent line

(D) At what \(x \)-values is the tangent line horizontal? That is, at what \(x \)-values is \(m = f'(x) = 0 \)?

Solution: Set \(f'(x) = 0 \) and solve for \(x \).

\[
4x^3 - 12x = 0 \\
x^3 - 3x = 0
\]
Solving $x^3 - 3x = 0$

The wrong solution method

Add $3x$ to both sides

$x^3 = 3x$

Divide by x **Cannot do this if $x = 0$**

$x^2 = 3$

$x = \sqrt{3}$ or $x = -\sqrt{3}$

We missed the solution $x = 0$
Better solution: factor

\[x^3 - 3x = 0 \]
\[x(x^2 - 3) = 0 \]
\[x(x + \sqrt{3})(x - \sqrt{3}) = 0 \]

Three solutions: \(x = 0 \), \(x = -\sqrt{3} \), \(x = \sqrt{3} \)