Exam 1 Scores:

Average ≈ 66% (low C+)

A: 25
A-: 6
B+: 13
B: 6
B-: 9
C+: 2
C: 16
C-: 5
D: 20
F: 16

hole in the middle
Section 3-1 Limits

The definition of limit

Symbol: \[\lim_{x \to c} f(x) = L \]

Spoken: "the limit, as \(x \) approaches \(c \), of \(f(x) \), is \(L \)."

Less-abbreviated symbol: \(f(x) \to L \) as \(x \to c \).

Spoken: "\(f(x) \) approaches \(L \) as \(x \) approaches \(c \)."

Usage: \(x \) is a variable.
\(f \) is a function
\(c \) is a real number constant
\(L \) is a real number constant

Meaning: As \(x \) gets closer & closer to \(c \), but not equal to \(c \),
the value of \(f(x) \) gets closer & closer to \(L \) (and may actually equal \(L \))"
<table>
<thead>
<tr>
<th>(f)</th>
<th>(g)</th>
<th>(h)</th>
<th>(i)</th>
<th>(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((9))</td>
<td>((10))</td>
<td>((11))</td>
<td>((12))</td>
<td>((13))</td>
</tr>
<tr>
<td>(\lim_{x \to a} f(x) = L)</td>
<td>(\lim_{x \to a} g(x) = L)</td>
<td>(\lim_{x \to a} h(x) = L)</td>
<td>(\lim_{x \to a} i(x) = L)</td>
<td>(\lim_{x \to a} j(x) = L)</td>
</tr>
</tbody>
</table>

Use the graph to fill in the table (Extra copies of the graph are on back).
So far: graphical approach to limits

- Class drill 4 involved graph \(\Rightarrow \) descriptions of the limits.

- Now do another type of graphical problem.

 \[\text{description of limits} \quad \Rightarrow \quad \text{graph}. \]

Exercise 3.1440 Sketch a graph that satisfies all three conditions:

- \(f(1) = 1 \)

- \(\lim_{{x \to 1^-}} f(x) = 2 \)

- \(\lim_{{x \to 1^+}} f(x) = -3 \)
Solution

Three locations are important:

\[(x, y) = (1, 1)\]
\[(x, y) = (1, 2)\]
\[(x, y) = (1, -3)\]

Plot open circles at those locations.

As \(x\) gets close to 1 from the left, \(y\) gets close to 2.

Because

\[
\lim_{{x \to 1^-}} f(x) = 2
\]

\((1, 1)\) filled in because \(f(1) = 1\)

\((1, -3)\)
Example #2 3-1 #42

Sketch a possible graph of a function \(f \) that satisfies all three conditions:

- \(f(-5) = 3 \)
- \(\lim_{x \to -5^-} f(x) = 4 \)
- \(\lim_{x \to -5^+} f(x) = 4 \)

Solution: important locations: \((x,y) = (-5,3)\) and \((x,y) = (-5,4)\)