Definition of Average Rate of Change
- **words:** the average rate of change of \(f \) as the input changes from \(a \) to \(b \)
- **usage:** \(f \) is a function that is continuous on the interval \([a,b]\).
- **meaning:** the number \(m = \frac{f(b) - f(a)}{b - a} \)
- **graphical interpretation:** \(m \) is the slope of the secant line containing \((a, f(a))\) and \((b, f(b))\).
- **remark:** The average rate of change \(m \) is a number.

Definition of Instantaneous Rate of Change
- **words:** the instantaneous rate of change of \(f \) at \(a \).
- **alternate words:** the derivative of \(f \) at \(a \).
- **symbol:** \(f'(a) \)
- **meaning:** the number \(m = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} \)
- **graphical interpretation:** \(m \) is the slope of the line tangent to the graph of \(f \) at the point \((x, y) = (a, f(a))\).
- **remark:** The instantaneous rate of change \(f'(a) \) is a number.

Definition of the Derivative
- **words:** the derivative of \(f \)
- **symbol:** \(f' \)
- **meaning:** \(f' \) is a function. To describe a function, one must specify how it produces output for a given input. For input \(x \), the output \(f'(x) \) is the number \(f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \).
- **graphical interpretation:** For an input \(x \), the output \(f'(x) \) is the number that is the slope of the line tangent to the graph of \(f \) at the point \((a, f(a))\)
- **remark:** The derivative \(f' \) is a function.

Terminology of Position and Velocity
- **Time:** When our book uses mathematical functions to describe the motion of objects, \(x \) is a variable that represents the elapsed time.
- **Position:** To say an object is “moving in 1 dimension” means that it can go forward or backward in one direction but cannot turn. In such situations, a single coordinate can be used to keep track of the position of the object. A function called the *position function* gives the value of the coordinate at a given time. In our book, the position function is called \(f \). That is, at time \(x \), the coordinate of the object is the number \(f(x) \).
- **average velocity:** The words “the average velocity from time \(x = a \) to time \(x=b \)” mean the same thing as the words “the average rate of change of position from time \(t=a \) to time \(t=b \)”.
- **instantaneous velocity:** The words “instantaneous velocity at time \(x =a \)” mean the same thing as “instantaneous rate of change of position at time \(x = a \)” That is, the number \(f'(a) \).
- **velocity:** The word “velocity” means the same thing as the words “derivative of the position function”. That is, the velocity is the function \(f' \).