Class Drill 12: Using the Graphing Strategy to Graph a Polynomial
The goal is to graph the function \(f(x) = x^3 - 3x^2 - 9x - 5 = (x + 1)^2(x - 5). \)

Step 1. Analyze \(f(x) \).
- Find the \(y \)-intercept.
- Find the \(x \)-intercepts.
- Determine the end-behavior.
- Make a sign chart for \(f \) and use it to determine where \(f \) is positive, negative, or zero.

Step 2. Analyze \(f'(x) \).
- Find \(f'(x) \) and factor it.
- Find the partition numbers for \(f'(x) \).
- Construct a sign chart for \(f'(x) \) and use it to determine the intervals on which \(f \) is increasing and decreasing, and to find the \(x \)-coordinates of all local maxima and minima.
- Find the \(y \)-coordinates of all local maxima and minima.
Step 3. Analyze $f''(x)$.
- Find $f''(x)$ and factor it.
- Find the partition numbers for $f''(x)$.
- Construct a sign chart for $f''(x)$ and use it to determine the intervals on which f is concave up and concave down, and to find the x-coordinates of all inflection points.
- Find the y-coordinates of all inflection points.

Step 4: Sketch the graph of f.
- Plot the axis intercepts, local maxima and minima, and inflection points, and label them with their (x,y) coordinates.
- Using the other information from steps 1, 2, and 3, draw the graph.