Math 330A Homework Set #3, Due Tuesday, January 26, 2010

[1] (Variation on Exercise 1.2#6) Justify steps in the proof of this theorem:

Theorem: In Euclidean Geometry, in any triangle, the perpendicular bisectors of the three sides are concurrent.

Proof

(1) Suppose that \(\triangle ABC \) is a triangle in Euclidean Geometry.

Show that the perpendicular bisector of side \(AB \) exists.
(2) The midpoint of side \(AB \) exists. (justify: __)

Label the midpoint \(M \).
(3) There exists a line \(K \) that passes through point \(M \) and is perpendicular to side \(AB \). (justify: __).

Observe that line \(K \) is the perpendicular bisector of side \(AB \).

Show that the perpendicular bisector of side \(BC \) exists.
(4) Steps just like steps 2 and 3 could be used to show that side \(BC \) has a midpoint \(N \) and that there exists a line \(L \) that is the perpendicular bisector of side \(BC \).

Show that lines \(K \) and \(L \) meet
(5) The fact that lines \(K \) and \(L \) meet can be proved, but it requires the Euclidean Parallel Postulate. Just take it as a given that lines \(K \) and \(L \) meet at a point \(O \).

Discuss the distances from point \(O \) to the three vertices.
(6) We know that \(AO = BO \) (justify: __)

(7) We know that \(BO = CO \) (justify: __)
(8) Therefore, \(AO = CO \) (justify: __)

Show that point \(O \) is actually on the perpendicular bisector of side \(CA \), as well.
(9) Because \(AO = CO \), we know that point \(O \) must be on the perpendicular bisector of side \(CA \). (justify: __)

In conclusion, we have shown that there exists a point \(O \) that all three perpendicular bisectors pass through.
End of Proof
[2] (Variation on Exercise 1.2#6) Given the acute triangle below, construct the circle that circumscribes it.

Hint: Use what you learned in exercise [1]. That is, start by constructing the perpendicular bisectors of two of the sides of the triangle. You know that they will meet at some point that you can call \(O \), and you know from problem [1] that this point \(O \) would also be on the perpendicular bisector of the third side if it were drawn. (You don’t need to draw that third perpendicular bisector.) Therefore, this point \(O \) must be equidistant from the three vertices of the triangle. Construct the circle that is centered at \(O \) and passes through \(A \).

Remember that you will need to do two things:

- Produce a list of instructions for the construction consistent with the rules.
- Do the construction on paper with your straight-edge and non-collapsing compass. (You can draw right on this page. List the instructions on a separate sheet.)
[3] (Variation on Exercise 1.2#6) Justify the steps in the proof of this theorem:

Theorem: In Neutral Geometry, in any triangle, the angle bisectors of the three angles are concurrent.

Proof

(1) Suppose that ΔABC is a triangle in Neutral Geometry. Show that the angle bisector of angle A exists.

(2) We can measure the size of angle A. The result is a number x such that 0 < x < 180. (justify __)

(3) There exists a Ray(AD) in the interior of ∠A such that the m(∠BAD) = x/2. (justify __)

Observe that Ray(AD) is the bisector of ∠A.

Show that the angle bisector of angle B exists.

(4) Steps just like steps 2 and 3 could be used to show that there exists a ray BE that is the bisector of angle B.

Show that rays AD and BE meet

(5) Ray AD intersects segment BC at a point that we can label F. (justify: __)

(6) Ray BE intersects segment AF at a point that we can label G. (justify: __)

Observe that point G is on ray AD and also on ray BE.

Discuss the distances from point G to the three sides of the triangle.

(7) We know that point G is equidistant from lines CA and AB (justify: __)

(8) We know that point G is equidistant from lines AB and BC (justify: __)

(9) Therefore point G is equidistant from lines BC and CA. (justify: __)

Show that point G is actually on the angle bisector of ∠BCA, as well

(10) Because point G is equidistant from lines BC and CA we know from theorem _____________ that point G must be on the angle bisector of ∠BCA.

In conclusion, we have shown that there exists a point G that all three angle bisectors pass through.

End of Proof
[4] (Variation on Exercise 1.2#6) Given the acute triangle below, construct a circle that is inscribed in it. (Remember that you have to make a list of instructions.) Hint: Use what you learned in exercise [3]. That is, start by constructing the bisectors of two of the angles of the triangle. From problem [2], you know that they will meet at some point that you can call G, and you know that this point G would also be on the bisector of the third angle if it were drawn. (You don’t need to draw it.) Therefore, this point G must be equidistant from the three sides of the triangle. The circle that you need to create must be centered at G. But in order to draw the circle, you will need to know its radius. For that, construct a line that passes through O and is perpendicular to one of the sides of the triangle. Construct a point H at the intersection of the perpendicular and the side of the triangle. Use OH as the radius of your circle.
[5] (variation on exercise 1.2#10a) Justify steps in the proof of Theorem 1.7.

Theorem 1.7 In Neutral Geometry, in any convex kite, the angle bisectors are concurrent

Proof

(1) Let $ABCD$ be a convex kite with $BA = BC$ and $DA = DC$

Show that the main diagonal bisects angles B and D

(2) $\Delta BAD \cong \Delta BCD$ (justify: ____________________________________)

(3) $\angle ABD \cong \angle CBD$ (justify: ____________________________________)

This tells us that the main diagonal bisects $\angle B$.

(4) $\angle ADB \cong \angle CDB$ (justify: ____________________________________)

This tells us that the main diagonal bisects $\angle D$.

Introduce the bisector of angle A and the point O

(5) A ray AE exists that bisects $\angle A$. (justify: ______________________________)

(6) Ray AE intersects segment BD (justify: ______________________________)

Let O be the point of intersection of Ray AE and segment BD. Note that so far, we know that the bisectors of angles B, D, and A intersect at point O.

Introduce some distances

(7) Let d_1 be the distance from point O to line AD,
let d_2 be the distance from point O to line AB,
let d_3 be the distance from point O to line BC
let d_4 be the distance from point O to line CD.

Discuss known equalities among some of these distances

(8) $d_3 = d_2$ (justify: ______________________________)

(9) $d_2 = d_1$ (justify: ______________________________)

(10) $d_1 = d_4$ (justify: ______________________________)

(11) $d_3 = d_4$ (justify: ______________________________)

Wrap-up

(12) Point O must be on the bisector of angle C. (justify: ______________________________)

We conclude that the bisectors of all four angles intersect at point O.

End of Proof
[6] (Variation on Exercise 1.2#10b) Create a geogebra drawing to illustrate the fact that given any convex kite (ABCD), a circle can be inscribed in the kite.

- In your drawing, points A, B, and D should be free. Point C and all other parts of the drawing should be dependent.
- Somewhere in the upper right of the drawing, insert a textbox with the text H3.Lastname using your last name.
- Save the drawing. Give it the filename H3.Lastname
- Send me the drawing in an e-mail
 - Recipients:
 - me: Mark.Barsamian.1@ohio.edu
 - you: your OU e-mail address
 - Subject line: Geometry H3 Lastname
 - Attachment: Your file called H3.Lastname
 - Body of the message: Geometry Homework 3 from Your Name.

Hint: Use the theorem that you proved in [5]. That is, start by constructing the bisectors of two of the angles of the kite. From problem [5], you know that they will meet at some point that you can call O, and you know that this point O would also be on the bisector of the third and fourth angles if they were drawn. (You don’t need to draw them.) Therefore, this point O must be equidistant from the four sides of the kite. The circle that you need to create must be centered at O. But in order to draw the circle, you will need to know its radius. For that, construct a line that passes through O and is perpendicular to one of the sides of the kite. Construct a point H at the intersection of the perpendicular and the side of the kite. Use OH as the radius of your circle.
[7] (Variation on Exercise 1.2#14a) Given the scalene triangle \(\triangle ABC \) below, construct another triangle \(\triangle A_1B_1C_1 \) congruent to it such that your constructed point \(B_1 \) lies on the given ray \(A_1D \).

Remember that you will need to do two things:
- Produce a list of instructions for the construction consistent with the rules.
- Do the construction on paper with your straight-edge and non-collapsing compass. (You can draw right on this page. List the instructions on a separate sheet.)
[8] Find the sum of the measures of the interior angles of a convex n-gon using two methods:
 (a) Use the picture and suggestion in textbook Exercise 1.3#2b.
 (b) Use the picture and suggestion in textbook Exercise 1.3#3.

[9] The goal is to solve textbook problem 1.3#6abd. (Skip part c) I will give you some additional hints.
For part (a) of problem #6 in the book, find an equation that gives x in terms of y and z. (Hint: Through the point that is the vertex of $\angle y$, draw a line that is parallel to line a. Look at the way this line breaks up y into two smaller angles. Think about two smaller angles: What do they add up to? What angles are they each congruent to? Use this information to get an equation that gives x in terms of y and z.)

For part (b) of problem #6 in the book, find an equation that gives α_4 in terms of α_3, α_2, and α_1. (Hint: Through the point that is the vertex of angle α_3, draw a line that is parallel to line a. Look at the way this line breaks up angle α_3 into two smaller angles. The upper small angle is congruent to angle α_4. The lower small angle has a measure that you can compute using the formula from part (a). Using this information, and angle addition, you can get an equation that gives α_4 in terms of α_3, α_2, and α_1.)

For part (d) of the problem in the book, notice the pattern from parts (a) and (b).

[10] This is a clarification of problem 1.3#9 in the book. Find a formula that expresses the measure of $\angle D$ in terms of the measure of $\angle A$.