Math 163A Handout 2: Tables about Transformations and End Behavior

Transformations of graphs

<table>
<thead>
<tr>
<th></th>
<th>constant on the outside</th>
<th>constant on the inside</th>
</tr>
</thead>
<tbody>
<tr>
<td>additive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant on the outside</td>
<td>(g(x) = f(x) + c)</td>
<td>(g(x) = f(x + c))</td>
</tr>
<tr>
<td>Make graph of (g) by adding (c) to the (y)-values on the graph of (f).</td>
<td>Make graph of (g) by subtracting (c) from the (x)-values on the graph of (f).</td>
<td></td>
</tr>
<tr>
<td>multiplicative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant on the inside</td>
<td>(g(x) = cf(x))</td>
<td></td>
</tr>
<tr>
<td>Make graph of (g) by multiplying the (y)-values on the graph of (f) by (c).</td>
<td>Make graph of (g) by dividing the (x)-values on the graph of (f) by (c).</td>
<td></td>
</tr>
</tbody>
</table>

End behavior of polynomial graphs

<table>
<thead>
<tr>
<th>End behavior of polynomial graphs</th>
<th>even-degree polynomial</th>
<th>odd-degree polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive leading coefficient</td>
<td>graph goes up on both sides</td>
<td>graph goes up on right, down on left.</td>
</tr>
<tr>
<td>negative leading coefficient</td>
<td>graph goes down on both sides</td>
<td>graph goes down on right, up on left.</td>
</tr>
</tbody>
</table>