[1] (similar to suggested problem 1.1#16)
Write a truth table for the statement form \(p \lor (\neg q \land r) \).

[2] (similar to suggested problem 1.1#19) Is the statement form \(\neg(p \lor q) \) logically equivalent to the statement form \(\neg p \lor \neg q \)? Justify your answer using a truth table and some explanation.

[3] (similar to suggested problems 1.1#29) Using DeMorgan’s laws, find the negation of statement \(P: \text{Bob is green and George is red} \).

[4] (similar to suggested problem 1.1#35) Using DeMorgan’s laws, find the negation of statement \(Q: 5 \leq x < 6 \).

[5] (similar to suggested problem 1.1#42) Is the statement form \((\neg p \lor q) \lor (p \land \neg q) \) a tautology, a contradiction, or neither? Justify your answer using a truth table and some explanation.

[6] (similar to suggested problem 1.2#7)
Construct a truth table for the statement form \(\neg p \lor q \rightarrow r \).

[7] (similar to suggested problems 1.2#15) Use truth tables to verify the following logical equivalences. Include a few words of explanation with your answers
(a) \(p \rightarrow q \equiv \neg p \lor q \)
(b) \(\neg(p \rightarrow q) \equiv (p \land \neg q) \)

[8] (similar to suggested problems 1.2#20, 22, 23)
Consider statement \(S \): If Ann is green, then Bob is red.
(a) In words, write the contrapositive of \(S \).
(b) In words, write the converse of \(S \).
(c) In words, write the inverse of \(S \).
(d) In words, write the negation of \(S \).

[9] (similar to suggested problem 1.2#33) Consider the following statement \(S \).
statement \(S \): You are an astronaut only if you are in excellent health.
The goal is to rewrite statement \(S \) as an if-then statement in two different ways. To do this, rewrite statement \(S \) in if-then form. Then, using the contrapositive, write a second version.

[10] (a) Give an example of a conditional statement \(A \) such that \(A \) is true and the converse of \(A \) is false.
(b) Give an example of a conditional statement \(B \) such that \(B \) is true and the converse of \(B \) is also true.