Math 163A Handout 4: Definitions of Rates of Change

Definition of average rate of change
- words: the average rate of change of f as the input changes from a to b
- usage: f is a function that is continuous on the interval $[a,b]$.
- meaning: the number $m = \frac{f(b) - f(a)}{b-a}$
- graphical interpretation: m is the slope of the secant line containing points $(a, f(a))$ and $(b, f(b))$.
- remark: The average rate of change m is a number.

Definition of instantaneous rate of change
- words: the instantaneous rate of change of f at a.
- alternate words: the derivative of f at a.
- symbol: $f'(a)$
- meaning: the number $m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$
- graphical interpretation: m is the slope of the line tangent to the graph of f at the point $(a, f(a))$.
- remark: The instantaneous rate of change $f'(a)$ is a number.

Definition of the Derivative
- words: the derivative of f
- symbol: f'
- meaning: Note that f' is a function. To describe the function, I have to tell you how it produces the output for a given input. For an input x, the output $f'(x)$ is the number $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.
- graphical interpretation: For an input x, the output $f'(x)$ is the number that is the slope of the line tangent to the graph of f at the point $(a, f(a))$.
- remark: The derivative f' is a function.

Physics Terminology of Position and Velocity
- Time: When using mathematical functions to describe the motion of objects, x is a variable that represents the elapsed time. (In physics books, the letter t is used, but our book uses x.)
- Position: In physics, to say an object is “moving in 1 dimension” means that it can go forwards or backwards but can’t turn. Examples are a train moving on a straight track, a car moving on a straight road, or an object going straight up & down under the influence of gravity. In such situations, a single coordinate can be used to keep track of the position of the object. A function called the position function gives the value of the coordinate at a given time. In our book, the position function is called f. That is, at time x, the coordinate of the position of the object is the number $f(x)$. (In physics books, the letter s is used for the position function. So at time t, the coordinate of the position of an object is $s(t)$.)
- average velocity: The words “the average velocity from time $x = a$ to time $x=b$” mean the same thing as the words “the average rate of change of f as the input changes from a to b”.
- instantaneous velocity: The words “the instantaneous velocity at time $x =a$” mean the same thing as the words “the instantaneous rate of change of f at time $x = a$.” That is, the number $f'(a)$. (In physics, the letter v is used for the velocity, so the symbol would be $v(a)$.)
- velocity: The word “velocity” means the same thing as the words “the derivative of the position function”. That is, the velocity is the function f'. (In physics, the symbol would be v.)