**What is Cogeneration?**
- We like the definition presented by the **Midwest
Cogeneration Association** as follows: **Cogneration is the utilization of 2 forms of energy
from 1 source i.e.: hot water/heat and electricity from one gen-set.**

According to **Cogeneration
Technologies**, the world's first commercial power plant
- **Thomas
Edison's Pearl Street Station** built in 1882 - was a cogeneration
plant as it made and distributed both electricity and thermal
energy, thus the concept has been around for many years, With
the recent interest in greener energy technologies it is currently
becoming more popular.

This brings us to the current problem ststement: In an effort to decentralise the power grid and utilize the waste heat which accompanies power generation, the Athenai Power Consulting Corp. has proposed a Cogeneration system for O'Bleness Hospital to provide both 500kW electric power and hot water at 60°C. The basic approach to this unique design is shown in the following schematic diagram:

A unique aspect of the power plant is that the turbine output is at 100kPa close to 100°C. This high pressure output both eliminates the need for a deaerator and the condenser will be able to directly heat the water to the required 60°C. During the lull period when no hot water is required, water is drawn from the Hocking River to condense and subcool the steam in the hotwell to 60°C. As a young engineer at Athenai your purpose is to evaluate the basic design and discuss its effectiveness.

- 1) Neatly sketch the complete cycle on the
diagram provided, indicating clearly stations (1), (2), (3), and (4) on the diagram. Once this is done then use the*P-h*(pressure-enthalpy)**Steam Tables**to determine the following: - 2) Determine the mass flow rate of the steam through the cycle required in order to provide the turbine output power of 500kW [0.691 kg/s]
- 3) Determine the power required to drive the feedwater pump [2.69 kW].
- 4) Determine the overall thermal efficiency
η
_{th}of this power plant. (Recall that thermal efficiency is defined as the net work done divided by the total heat supplied externally to the boiler [23%] - 5) Determine the cooling power in the condenser required to condense the steam exiting the turbine at station (2) and subcool the condensed steam to 60°C at station (3) [-1628 kW]
- 6) Assuming that the water in the hot water distribution system is heated from 25°C to 60°C, and that no river cooling is provided, determine the mass flow rate of the hot water required to subcool the condenser water to 60°C [11.1 kg/s]
- 7) In the lull period when no hot water is required, determine the mass flow rate of water from the Hocking River required to subcool the condenser water to 60°C. Note that the river water temperature rise must not exceed 10°C [39 kg/s]
- 8) Discuss the proposed system with respect to its environmental impact and feasibility.

*Justify* all values
used and *derive* all equations used starting from the basic
energy equation for a flow system, the basic definition of thermal
efficiency η_{th}, and the enthalpy change of incompressible
liquid water Δh.