Problems 4.7 - A Home Refrigerator with a Sunpower Linear Compressor

Background - The very impressive Athens based R&D company, Sunpower, Inc, was formed by William Beale more than forty years ago, mainly based on his invention of the free-piston Stirling engine. The free-piston configuration enabled Sunpower over the years to develop an internationally recognised expertise in linear motors and generators, and one of the byproducts of this development is the oil-free linear compressor for refrigeration applications.

The following drawing is reproduced from a paper by Sunpower (refer for example to the various technical papers on linear compressors which can be downloaded from Sunpower's website), and illustrates the significant difference between a regular mechanical slider-crank compressor mechanism and the linear compressor:

Some of the major advantages of the linear compressor are:

Some photographs of the linear compressor

Sunpower exhibited the first commercial refrigerator using the linear compressor at the Sustainability Fair, which took place in the Athens Fairgrounds on October 14, 2001 (see picture). This is an extremely quiet and very impressive machine, and is manufactured by LG Electronics in Korea.

Problem 4.7 - We wish to do a preliminary thermodynamic evaluation of a refrigeration system designed for home usage which will use the linear compressor with refrigerant R134a. Consider the following system flow diagram (Note: the picture of the Sunpower linear compressor was taken from Sunpower's website with permission, however all other values shown in this diagram are pure speculation on the part of your instructor for purposes of this exercise):

Notice that no mass flow rate has been provided, thus all energy solutions should be specific quantities [kJ/kg]. Using the data provided on the above schematic we first plot the four processes on the P-h diagram as follows:

Using the R134a refrigerant property tables to evaluate the enthalpy at all four stations determine the following:

Internal Heat Exchanger Addition - On a previous tour of Sunpower (October 2005) we were told by the engineer in charge of linear compressor development (Robi Unger) that it is common practice in the refrigeration industry to use an internal heat exchanger to subcool the refrigeramt at the outlet of the condensor by means of that exiting the evaporator and thus obtain a much larger refrigeration capacity using the same components. Using that information we have constructed a new system flow diagram as follows:

Notice that we have included an internal heat exchanger that heats the refrigerant exiting the evaporator (as a saturated vapor at 140kPa) to 20°C. We have chosen a state numbering system (1x, 2x, and so on) so as to allow the new system to be plotted on the same P-h diagram as above, and thus to be able to qualitatively compare the increase and improvement of performance provided by adding the internal heat exchanger. We first augment the above P-h diagram as follows:

In order to determine the new value of enthalpy at state 3x we consider the heat transferred in the heat exchanger as in the following diagram:

Notice again that no mass flow rate has been provided, thus all energy solutions should be specific quantities [kJ/kg]. Using the R134a refrigerant property tables to evaluate the enthalpy at stations (1x), (2x), (3x), and (4x) determine the following:

Finally, comparing the two systems compare their respective performance and discuss the results.

______________________________________________________________________________________

Creative Commons License
Engineering Thermodynamics by Israel Urieli is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License